JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、DNA損傷を評価するために彗星アッセイで使用するための壊死時に高品質の凍結組織サンプルを調製するためのいくつかの手順を説明します:1)細かい組織、2)消化管からの掻き取られた上皮細胞、および3)立方体組織サンプルは、組織ミンチ装置を用いて均質化を必要とする。

要約

この彗星アッセイは、培養細胞や組織、特に化学物質やその他の環境ストストレス剤への暴露後のDNA損傷を評価する手段として人気を集めています。げっ歯類の遺伝子毒性ポテンシャルに対する規制試験における彗星アッセイの使用は、2014年に経済協力開発機構(OECD)の試験ガイドラインの採択によって推進されている。彗星アッセイスライドは、典型的には、壊死時に新鮮な組織から調製される。しかし、凍結組織サンプルは、動物1匹当たりおよび研究ごとに多くの動物からの複数の臓器からのスライドの同時調製に関連する物流上の課題を回避することができます。凍結はまた分析のために暴露施設から別の実験室にサンプルを出荷することを可能にし、凍結組織の貯蔵は、特定の器官のDNA損傷データを生成する決定を延期することを容易にする。アルカリ性彗星アッセイは、露光関連DNAの二重および一本鎖の破断、アルカリ性不安定性病変、不完全なDNA切除修復に関連する鎖破断を検出するのに有用である。しかし、DNA損傷は、機械的なせん断または不適切なサンプル処理手順からも生じ、アッセイの結果を混乱させる可能性があります。壊死時の組織サンプルの収集と処理における再現性は、彗星アッセイのための組織の収穫の経験の様々なレベルを持つ実験室の人員の変動のために制御することが困難である可能性があります。経験豊富なラボスタッフを配置したリフレッシュトレーニングやモバイルユニットの展開を通じて一貫性を高めるにはコストがかかり、必ずしも実現可能とは限りません。彗星アッセイ分析用の高品質サンプルの生成を一貫して最適化するために、カスタマイズされた組織ミンチ装置を用いて組織の凍結された立方体のフラッシュを均質化する方法を評価した。この方法によって彗星アッセイのために調製されたサンプルは、壊死中にミンチすることによって調製された新鮮で凍結した組織サンプルと品質において良好に比較した。さらに、長期保存後の組織の凍結キューブからの細胞における低ベースラインDNA損傷を測定した。

概要

この彗星アッセイは、化学物質や他の環境ストルッサー1にさらされた培養細胞および組織におけるDNA損傷を評価する手段としてますます使用されている。このアッセイは、不完全なDNA修復に関連するDNA二重および一本鎖の破断、アルカリ陰茎病変、および一本鎖の破断を検出することができる。医薬品検査のための医薬品技術要件の国際協議会(ICH)ガイドラインは、生体内の遺伝毒性を評価するためのげっ歯類赤血球微小核アッセイを補完し、腫瘍誘導の標的臓器における作用様式を評価するためのフォローアップテストとして、彗星アッセイなどのDNA鎖破損アッセイを推奨しています。欧州食品安全機関(EFSA)は、生体内彗星アッセイを、体外遺伝毒性試験3における陽性結果の関連性を調査するための適切なフォローアップ試験として推奨している。2014年、OECD試験ガイドラインがげっ歯類彗星アッセイに承認され、遺伝子毒性ポテンシャルの規制試験に使用するアッセイの受容性が高められた。このアッセイは、リラックスしたDNAループと、リセド細胞のヌクレオイドから移行する断片の電気泳動分離に基づいています。基本的に、単一の細胞は、顕微鏡スライドに重ねられたアガロースに埋め込まれています。スライドは溶解バッファーに浸漬され、その後にアルカリ性(pH > 13)溶液が続き、しっかりとコイル状の核DNAがリラックスしてくつろぐことができます。その後、スライドを電界に配置し、負に帯電したDNAを負の電荷から陽極に向かって移動させ、彗星に似た画像を作成します。彗星の頭部と比較して彗星の尾のDNAの相対的な量はDNA損傷の量に直接比例する;尾部のDNA含有量は、典型的には、デジタルイメージングソフトウェアを用いて定量される。

彗星アッセイは断片化したDNAを検出するため、治療による細胞毒性またはストレスに起因する壊死またはアポトーシスに関連するクロマチン断片化によって、暴露誘発DNA損傷の正確な定量化が可能です。さらに、機械的なせん断または不適切なサンプル処理4の結果としてDNA損傷が起こり得。DNA損傷のベースラインレベルを最小限に抑えるためにスライド調製の前に、収穫された組織を冷やして維持することの重要性は、前に5,6,6に実証されている。多くの研究所は、新鮮なティッシュから彗星アッセイスライドを準備します。しかし、これは、多数の動物を含む研究で動物ごとに複数の組織タイプからのスライドを準備する場合、ロジスティックに困難な場合があります。さらに、これは、スライドの準備と分析がリモートの実験室で発生する場合に問題を提示し、サンプルの出荷を必要とします。例えば、米国の国家毒物学プログラムは、その遺伝子毒物学試験プログラム(https://ntp.niehs.nih.gov/testing/types/genetic/index.html)の構成要素として彗星アッセイを含み、時には28日または90日の反復用量毒性試験にアッセイを組み込む。これは、インライフラボによる組織の収集と分析のために別の実験室へのサンプルの転送を必要とします。これを達成するために、組織片が細かく切断され、および/または胃腸管の上皮細胞が掻き取られ、細胞懸濁液が凍結し、その後の出荷および記憶のために冷凍庫に保管され、その後の検査室による分析7まで保存される。サンプルの適切な取り扱いは、凍結組織を使用して高品質のデータを取得するために重要です。しかし、絶えず変化する人員によって行われる壊死時の組織サンプルの再現性操作は、特に彗星アッセイのために日常的に組織を収穫しないインライフラボでは制御が困難である。壊死のスタッフのリフレッシュトレーニングや、経験豊富な研究室のスタッフが新鮮または凍結した組織サンプルを収集するためのモバイルユニットの使用は、多くの場合、あまりにも高価で、実現不可能であるか、単に過小評価されています。

彗星アッセイ分析のために遠隔部位に移送するための高品質の組織サンプルの一貫した生成をより良くするために、組織のフラッシュ凍結キューブからの組織保存の公表された方法6の有用性が検討された。この方法では、凍結した組織の立方体をステンレス鋼組織ミンチ装置(図1)に装填し、冷たい緩衝液を含むマイクロ遠心管に入れる。組織の立方体は、デバイスの端にある小さなゲージメッシュを通して押されます。メッシュのふるいを介して繰り返し組織懸濁液を両側向きに押し付けると、比較的均一な単一細胞懸濁液が生じる。この方法で調製されたサンプルは、ミンチによって調製された新鮮な組織および凍結した組織サンプルと品質において良好に比較した。追加の利点として、ひきびサンプルとは異なり、組織キューブは長期間凍結保存することができ、まだ彗星アッセイで高品質の結果をもたらす。

Access restricted. Please log in or start a trial to view this content.

プロトコル

組織は、グッドラボラトリー実践規則(21 CFR Part 58)および施設動物によって承認された動物使用プロトコルに従って、NTP契約研究所のAAALAC認定施設で行われた研究の実施中に収穫された各研究室のケア・使用委員会(IACUC)

1. 組織の収穫と加工

注:サンプルチューブ(例えば肝臓)を調製したり、サンプルの約半分を別の貯蔵管(例えば、十二指腸、胃)に移して、必要に応じて再分析を可能にするのに有用である。腸管組織のサンプル間変動の可能性を最小限に抑えるために、各動物の胃に対して同じ組織領域をサンプリングし、サンプルを分割して重複サンプルを生成することを注意してください。プラスチック鉗子は、脳などの粘着性の組織を移すため推奨されます。オプションとして、ミンチ、掻き取られた、または均質化された組織製剤は、円錐管に取り付けられた40μmの細胞ストレーナーを使用して均質な単一細胞懸濁液を達成するために濾過され得る。

  1. 関連する組織、臓器、破片を、目的の器官から取り除きます。取り外し直後に、残りの血液および破片を除去するために、冷たく作りたてのミンチ液の〜7 mL(Mg++、Ca++およびフェノール赤自由ハンクのバランス塩溶液、10%v/v DMSO、および20 mM EDTA pH 7.5)を含む中型の重量船で臓器を激しくスウィッシュします。
  2. 各臓器を、さらに処理するまで、氷上で、水没した組織を維持するのに十分な冷たいミンチ液を含む別のクリーンな重量のボートに移す。
  3. 目的の各器官のセクションを取り除き、埋め込みカセットに入れる。可能な将来の病理学的評価のための実験室の標準的なプロシージャに従って10%中性緩衝ホルマリン、トリムおよびパラフィン埋め込みで修正する。
  4. 肝臓の場合は、左葉の5mmの縦断面を切断し、冷たいミンチ溶液の〜7 mLを穏やかにスウィッシュします。冷たいミンチ液の〜7 mLを含むきれいな中型の重量を量るボートにティッシュのストリップを置き、さらに処理する準備ができるまで氷の上に維持する(ステップ1.8または1.11)。
  5. 十二指腸の場合は、胃に近位の十二指腸の10mmの部分を切断します。21~25Gの針を使用して、残骸や細菌を除去します。
    1. 十二指腸の一端に針を挿入し、冷たいミンチ溶液の1 mLで洗い流す。
    2. 十二指腸をひっくり返し、別の1 mLのミンチ溶液で繰り返して、他の方向を洗い流します。針を捨てます。
    3. 十二指腸をスライスし、洗浄液の〜7 mLを含む中型の計量ボートに入れる前に、〜7 mLのミンチ液でそれを洗いす。さらに処理する準備ができるまで氷の上に維持する(ステップ1.8または1.11)。
  6. 脳の場合は、最初に脳を2つの半球に分けておくのに役立つかもしれません。1つの半球は、可能な組織病理学のために保存することができる(ステップ1.2を参照)。
    1. 関心のある脳領域を解剖し、冷たいミンチ液の〜7 mLで穏やかにスウィッシュ。
    2. 冷たいミンチ液の〜7 mLを含むきれいな中型の計量船に組織を移し、さらに処理する準備ができるまで氷の上に維持する(ステップ1.8または1.11;小さな領域、小脳や海馬などの小さな領域はそれ以上のトリミングを必要としないことに注意してください)。
  7. 胃のために
    1. 前胃を取り除いて捨てます。腺胃を切り開き、中型の計量ボートで〜7 mLの冷たいミンチバッファーを使用して食品から自由に洗います。
    2. 可能な組織病理学の評価のための固定のために十二指腸に近位腺の腺胃の5mmストリップを取り除く(ステップ1.2を参照)。
    3. 残りの胃を中型の計量艇で約7mLの冷たいミンチバッファーに入れ、氷の上で15〜30分間インキュベートします。
      注:このインキュベーションステップは必要ないかもしれません。このステップは JaCVAM 検証プロトコルに含まれていましたが、OECD テストガイドライン8,,9には記載されていません。
    4. 腹をきれいなパラフィン(またはペトリ皿または計量船)に移し、メスの刃またはポリテトラフルオロエテン(PTFE)スクレーパーを使用して表面上皮を2回以上静かに掻き取り、破片を取り除きます。ピペットを使用して、1 mLの冷たいミンチバッファーで鉗子とすすいで胃粘膜を拾います。胃組織をきれいな表面または皿に移す。
    5. スカルデルブレードまたはPTFEスクレーパーの裏部で、ミンチ液(通常は250μL/マウスまたは500-1,000 μL/ラット)で胃上皮を4~5回(必要に応じて)慎重に削り取り、細胞を放出します。必要に応じて、より多くの細胞を回収するために、ほぼ等量のミンチ溶液で組織をすすい取る。ピペットを使用して放出された細胞を含むミンチ液を回収し、氷上のマイクロ遠心分離管に移します。
  8. 組織サンプルを細かくする場合は、肝臓または脳組織の3〜4mmのセクションまたは十二指腸の〜5mmを切断し、1 mLの冷たいミンチ溶液を含む標識された1.5または2.0 mLマイクロ遠心チューブに移します。サンプルを冷たく保ちながら、細かく分散するまでミンチハサミ(≤30 s)を急速にミンチします。サンプルは少し曇りで見えるはずです。しかし、チューブの底に落ち着く部分が残ることは一般的です。
  9. 新鮮な組織を使用するには、氷の上にひき肉または掻き取られた上皮細胞を含むチューブを維持します。収穫の約1時間以内に彗星スライドを準備するために組織を使用する(セクション2で概説)。
  10. 組織サンプルを凍結する場合、切り取られた上皮細胞のミンチまたは回収の直後
    1. チューブ蓋を固定し、液体窒素を含むデュワーフラスコにチューブをドロップします。チューブは、壊死の間液体窒素(≤3時間)に維持され得る。
    2. 取鍋を使用してチューブを取り出し、ドライアイスの上に置いて並べ替えます。ドライアイスの冷凍庫にチューブを移し、箱を-80 °Cの冷凍庫に保管します。
  11. 組織の凍結キューブを準備するには、組織のいくつかの小片(直径≤4 mm、長さ約6mm)をカットします。図 1)。
    1. 液体窒素を含む中型の計量艇または他の適切な容器に直接それらを直接落とします。
    2. 作品が完全に凍結し、個々の凍結組織キューブをドライアイスに維持されたラベル付きマイクロ遠心分離管またはクライオチューブに移すのを数秒待ちます。凍結プロセス中にピースが凝集しないようにしてください。
    3. ドライアイスの冷凍庫にチューブを移し、箱を-80 °Cの冷凍庫に保管します。

2. スライドの準備

  1. ひき肉/擦り傷付き組織用
    1. 湿った氷の上に新鮮なティッシュを含む管を維持する。
    2. 凍結した組織のチューブを室温の水浴に入れて、サンプルが完全に解凍されるまで、冷たく保たれます。すぐにチューブを氷の上に移します。
    3. アガロースに移すために細胞を引き出す直前(ステップ2.3)、各細胞懸濁液を穏やかに混ぜます。フィルター処理されていないサンプルの場合は、大きなチャンクをチューブの底面に落ち着かせるようにします。スライドがすべてのサンプルに対して準備されるまで、氷上のすべてのチューブを維持します。
  2. 立方体組織用
    1. 80°C冷凍庫から組織キューブを含むチューブを取り出し、スライド準備までドライアイスで維持します。
    2. アリコート1 mLのマーチャント培地(0.14 M NaCl、1.47 mM KH2PO 4、2.7 mM KCl、8.1 mM Na2HPO4、10mM NaEDTA、pH 7.4)またはミンチ溶液を各サンプル用のラベル付き1.7 mLマイクロ遠心チューブに入れ、氷上に維持する。4
    3. 組織の解凍を避けるために迅速に働いて、室温組織ミンチ装置の開いた端に組織の立方体を置く(図1)。複数の組織片が使用されてもよい。必要に応じて、凍結した組織を、冷たいモルタルと害虫を使用して小さく切り取って、立方体のサイズを小さくして装置に収まるようにします。
    4. サイズに合ったシリンジプランジャーを素早くデバイスに挿入して、組織をメッシュエンドに押し込み、冷たいミンチ溶液を含むマイクロ遠心分離管に入れる必要があります。液体を無理にチューブをオーバーフローさせないようにしてください。冷たいミンチ液に約5〜10のデバイスのメッシュ端を浸し、組織を完全に解凍できるようにします。
    5. 細胞がメッシュの毛穴を突き出して見えるまで、プランジャーを完全に押し落とします。その後、プランジャーを約2.5cm引き上げ、完全にもう一度押し下げる。このプロセスを、ミンチ液が濁るまで数回繰り返します。
    6. 必要に応じて、試料を1100rpmで5分間冷蔵遠心分離し、上清の一部を除去することによって細胞密度を高めるために濃縮してもよい。
    7. 各サンプルに対してクリーンティッシュミンチ装置を使用して、すべてのサンプルに対してこのプロセスを繰り返します。
  3. 50 μLの細胞懸濁液を、37°Cで0.5%低融点アガロースの450 μLを含むチューブに移します。
    注:ボリュームは調整できますが、アガロースの量は≤1%でなければなりません。
  4. 前述の10, 11に従ってスライドを準備し、スコアを付けます

Access restricted. Please log in or start a trial to view this content.

結果

研究1
肝臓は、トウモロコシ油を4日間投与した雄のスプレイグ・ドーリーラットの2つのコホートから収穫され、1週間ずらした。スライドは、ティッシュミンチを挽きたてのティッシュ、凍結したひき肉、および組織ミンチ装置を用いてマーチャントの培地またはミンチ溶液で処理された凍結立方体組織から調製した。第1コホートから得られた動物から得られた凍結組織を、?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

前に示したように7、7、12、13、12,13適切に取り扱うフラッシュ凍結ひき肉組織は、彗星アッセイにおいて良好な結果を提供する。実際、私たちの研究室で調製された凍結したひき肉およびマウス肝臓のベースライン%テールDNA値は、典型的には、新たにひき刻まれたラット肝臓サンプルに対するOECD試験ガイドライン

Access restricted. Please log in or start a trial to view this content.

開示事項

この研究は、NIHの壁内研究プログラム、国立環境衛生科学研究所(NIEHS)契約HHSN273201300009Cの下で支援されました。しかしながら、ここに含まれる記述、意見、または結論は、必ずしもNIEHS、NIH、または米国政府の発言、意見、結論を表すものではない。

謝辞

著者らは、リンカーン・マーティンとケリー・オーエンズに対し、彗星スライドの準備と採点に関する専門的な技術支援と、統計分析を行うためのキャロル・スワルツ博士に恩恵を受けている。著者らはまた、ILSの遺伝的毒物学、調査毒物学、および壊死プログラムのメンバーの支持的な貢献を認めている。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
CryovialsCorning Costar430488
Dental Wax SheetsElectron Microscopy Sciences72670
Dissecting (Mincing) Micro ScissorsFisher Scientific08-953-1B
DMSOSigma-AldrichD8418
Hank's Balanced Salt SolutionGibco14175-079
KClTeknovaP0315-10
KH2PO4Sigma-AldrichP9791
Low Melting Point AgaroseLonza50081
Microfuge Tubes (1.7 mL)Corning3207
Na2EDTASigma-AldrichE5134
Na2HPO4Sigma-AldrichS7907
NaClSigma-AldrichS6191
Neutral Buffered FormalinLeica600
Scalpel BladesMiltex4-110
Syringe Plunger (1 mL)Fisher Scientific or Vitality Medical14-826-88; 8881901014Becton Dickinson or Monoject tuberculin syringe
Tissue Mincing DeviceNorGenoTech (Oslo, Norway)NoneSmall variability in diameter observed which can affect snuggness of plunger.
Tweezers, plasticTrade Winds DirectDF8088NReinforced nylon, nonsterile, blunt tip, autoclavable; tradewindsdirect.com
Weigh BoatsKrackler Scientific/Heathrow Scientific6290-14251B

参考文献

  1. van der Leede, B. J., et al. Performance and data interpretation of the in vivo comet assay in pharmaceutical industry: EFPIA survey results. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 775-776, 81-88 (2014).
  2. ICH. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S2(R1): Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. ICH. , (2012).
  3. EFSA. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA Journal. 9 (9), 2379(2011).
  4. Lorenzo, Y., Costa, S., Collins, A. R., Azqueta, A. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis. 28 (4), 427-432 (2013).
  5. Guerard, M., Marchand, C., Plappert-Helbig, U. Influence of experimental conditions on data variability in the liver comet assay. Environmental and Molecular Mutagenesis. 55 (2), 114-121 (2014).
  6. Jackson, P., et al. Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay. Mutagenesis. 28 (6), 699-707 (2013).
  7. Recio, L., Kissling, G. E., Hobbs, C. A., Witt, K. L. Comparison of Comet assay dose-response for ethyl methanesulfonate using freshly prepared versus cryopreserved tissues. Environmental and Molecular Mutagenesis. 53 (2), 101-113 (2012).
  8. Uno, Y., et al. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for detection of genotoxic carcinogens: II. Summary of definitive validation study results. Mutation Research/Genetetic Toxicology and Environmental Mutagenesis. 786-788, 45-76 (2015).
  9. OECD. OECD Guideline for the Testing of Chemicals: In Vivo Mammalian Alkaline Comet Assay. OECD. 489, (2016).
  10. Hobbs, C. A., et al. Comet assay evaluation of six chemicals of known genotoxic potential in rats. Mutation Research/Genetetic Toxicology and Environmental Mutagenesis. 786-788, 172-181 (2015).
  11. Ding, W., Bishop, M. E., Lyn-Cook, L. E., Davis, K. J., Manjanatha, M. G. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver. Journal of Visualized Experiments. (111), 53833(2016).
  12. Hobbs, C. A., Chhabra, R. S., Recio, L., Streicker, M., Witt, K. L. Genotoxicity of styrene-acrylonitrile trimer in brain, liver, and blood cells of weanling F344 rats. Environmental and Molecular Mutagenesis. 53 (3), 227-238 (2012).
  13. Hobbs, C. A., et al. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food and Chemical Toxicology. 113, 218-227 (2018).
  14. Pant, K., et al. Vehicle and positive control values from the in vivo rodent comet assay and biomonitoring studies using human lymphocytes: historical database and influence of technical aspects. Environmental and Molecular Mutagenesis. 55 (8), 633-642 (2014).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

157DNAOECD

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved