JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

提示されたプロトコルは、封じ込めの設定で、ジカのような特定のウイルスに対する Aedes aegypti 蚊集団のベクター能力を決定することができる。

要約

提示された手順は、問題の蚊集団における感染率、播種感染、およびウイルスの潜在的な感染率を決定するために、実験室の条件下で Aedes aegypti 蚊をジカウイルスに感染させる一般的な方法論を記述する。これらの手順は、ベクター能力評価における様々な変更をグローバルに広く利用されています。彼らは、与えられた蚊(すなわち、種、集団、個体)が与えられた薬剤の伝達において果たす可能性のある役割を決定する上で重要である。

概要

ベクター能力は、種、集団、さらには個体のレベルでの能力として定義され、蚊、ダニ、またはフレボトミン砂飛のような与えられた節足動物の、節足動物1,2における複製または発生を伴う生物学的に薬剤を取得および伝達する。蚊および節足動物媒介ウイルス(すなわち、アルボウイルス)に関して、薬剤は雌の蚊によってビレミック宿主から浸透する。摂取後、ウイルスは、消化酵素によるタンパク質分解分解、微生物叢(ミドグ感染障壁、またはMIB)の存在、および分泌された腹膜マトリックスなどの様々な生理学的障害を克服し、中腸上皮細胞3の小集団の1つに生産的に感染しなければならない。中腸上皮の感染は、ウイルスの複製と最終的に蚊の開放的な循環系への中腸からの脱出、または中腸脱出障壁(MEB)を克服する播種感染の発症を表す血中リンパに続かなければならない。この時点で、ウイルスは二次組織(例えば、神経、筋肉、脂肪体)の感染を確立し、複製を続けることができますが、そのような二次複製は、ウイルスが唾液腺の体内細胞に感染する(唾液腺感染障壁を克服する)ために厳密に必要ではないかもしれません。唾液腺から補助的な空洞への出射口から唾液管への移動は、噛み付きの後続の宿主へのウイルスの接種を可能にし、伝達周期1、2、4、5、6、7を完了する。

このよく特徴づけられ、一般的に蚊ベクター内に広がるメカニズムが一般的に保存されていることを考えると、実験室のベクター能力評価はしばしば方法論的に類似しているが、プロトコルの違いは1,2である。一般的に、経口ウイルス暴露後、蚊は、ウイルス感染、播種感染、感染/潜在的なトランスリアル感染、および感染/潜在的な感染能力をそれぞれ8回受精させるため、中腸、脚、卵巣、唾液腺などの個々の組織をアッセイできるように解剖される。しかし、唾液腺にウイルスが存在することは、唾液腺脱出/出口バリア(SGEB)の証拠を与えられた1、2、4、5、7、9の伝達能力の決定的な証拠ではない。伝染能力を証明する標準的な方法は、感染の影響を受けやすい動物10、11、12への蚊の伝染のままである。しかし、多くのアルボウイルスでは、免疫不全マウスモデル13、14、15、16の使用が必要であることを考えるとこの方法はしばしばコストが非常に高い。一般的に使用される代替手段は、逆転写ポリメラーゼ連鎖反応(RT-PCR)または感染性アッセイによって分析することができる蚊の唾液の採取であり、それぞれウイルスゲノムまたは感染性粒子の存在を実証する。このようなインビトロ唾液採取方法は生体内給餌中に堆積したウイルスの量を12個過大評価または過小評価する可能性があり、そのようなデータは慎重に解釈しなければならないことを示している。しかし、インビトロ法は唾液中のウイルスの存在の観点から分析した場合に非常に価値が高く、感染の可能性を示す。

アルボウイルス性疾患の発生における蚊ベクターの役割を決定するための2つの主要なアプローチが存在する。最初の方法は、活動的な伝達18、19、20、21、22、23、24のコンテキストで蚊が収集されるフィールド監視含みます。しかし、感染率が典型的には非常に低い(例えば、米国21の活動性ジカウイルス(ZIKV)循環地域における蚊の推定0.061%感染率)を考えると、潜在的な種の犯罪は、方法論25、26およびランダムな確率(例えば、1,600人の感染した個人をサンプリングする)によって大きく偏る可能性がある。.これを考慮して、特定の研究は、伝染に関与する蚊を正確にサンプリングするのに十分な生の数または種の多様性の両方で十分な蚊を獲得しない可能性があります。対照的に、ベクター能力分析は実験室で行われ、経口投与などのパラメータを厳密に制御することができます。蚊の感染と伝染能力の真の複雑さをフィールド環境で完全に表す能力はありませんが、これらの実験室評価はアーボビロ学の分野で強力なツールのままです。

いくつかの蚊種、集団、および方法27、28、29、30、31、32の様々なベクトル能力分析に基づいて、ベクター能力評価の最近のレビュー1、典型的なベクトル能力ワークフローに関連するプロトコルのいくつかをここで説明する。これらの実験では、南北アメリカ(サルバドール市、ブラジル、ドミニカ共和国、および米国の低リオグランデバレー、TX、米国)からの3つのAe.aegypti集団が、4、5、または6ログ10の焦点形成単位(FFU/m線量)でZIKV(Mex 1-7、GenBank加盟:KX247632.1)の単一株にさらされました。その後、外挿術の様々な時間(2、4、7、10、および14日間)の後に、解剖および細胞培養ベースの感染アッセイによって感染、播種感染、および伝染能力の証拠について分析した。現在のワークフロー/プロトコルはZIKV用に最適化されていますが、多くの要素は節足動物の封じ込めおよびバイオセーフティレベル2および3(ACL/BSL2またはACL/ BSL3)の他の蚊媒介性アルボウイルスに直接翻訳可能です。

Access restricted. Please log in or start a trial to view this content.

プロトコル

これらのプロトコルで行われたすべての手順は、ガルベストンのテキサス大学医学部の機関バイオセーフティ委員会および制度的動物ケアおよび使用委員会によって承認されたプロトコルに完全に準拠して実行されました。

1. VERO細胞でZIKVを増幅

  1. 10%v/v熱不活性化ウシ胎児血清(FBS)と1%(v/v)ペニシリンストレプトマイシン(100 U/mLおよび100 μg/mL)を補ったイーグルの最小限の必須培地(DMEM)の変更でベロ細胞(CCL-81またはVeroE6)を成長させる それぞれ)150 cm2組織培養フラスコにおいて5%CO2を有する加湿された37°Cインキュベーターで、合流率80~90%の間に。
  2. バイオセーフティキャビネット(BSC)では、培地を取り出し、10%漂白剤または二重第四級アンモニウムのワーキング希釈(材料表)で処分する。1 mLのウイルスストックで即座に単層を接種し、細胞当たり0.1-1の感染性ウイルス粒子を目指します。接種物が単層全体に接触するように、フラスコを直ちに攪拌する。
  3. 2%v/v熱不活化FBS、および1%(v/v)ペニシリンストレプトマイシンを補ったDMEMを使用して、培地を5 mLのボリュームに上げてください。その後、フラスコを加湿した37°Cインキュベーターに5%CO2で60分間移動させます。
  4. インキュベーターからフラスコを取り出し、BSCに持ち込みます。2%v/v熱不活性化FBS、および1%(v/v)ペニシリンストレプトマイシンを補ったDMEMを使用して、合計体積15 mLに培地を追加します。フラスコを5%CO2の加湿37°Cインキュベーターに移します
  5. 細胞性効果(CPE)の証拠について、相コントラスト顕微鏡で毎日フラスコを調べます。細胞の約40〜50%のみが単層に残っている場合はウイルス収穫(ステップ1.7)に進み、一般的に利用されているZIKVの菌株に応じて感染後3〜5日。
  6. 上清を吸引し、50 mLの円錐バイアルに入れる。遠心分離(3,500 x g) で細胞デブリの上清を明らかにする。
    注:複数のフラスコが同じように感染した場合、複数のフラスコの上澄み物を50 mLの円錐形チューブに組み合わせることができます。
  7. 50 mLの円錐形チューブから新鮮なチューブに上清を取り出し、ペレットを破壊しないように注意してください。熱不活化FBSで上清を30%(v/v)の最終濃度に補います。アリコートこの混合物を個々のスクリューキャップチューブにし、使用するまで-80°Cで凍結します。

2. 人工血液の調製

  1. 蚊が感染性の血液を受ける日には、蚊が曝露する準備が整うまでに、栄養ユニット(材料表)が予熱されるように、節足動物の封じ込め施設の電源(材料表)をオンにします。
  2. 以下に説明する方法の1つを用いて人工血液食事を調製する。
    1. 方法1:市販の1:1 v/vで購入した、採取したばかりの(1週間以内)、またはヘパリン化されたヒト血液をウイルスストック(セクション1に記載されているように調製)と組み合わせる。
      注:この方法は、血液中に存在するウイルス/ウイルスファミリーに対する抗体がないことに依存します。
    2. 抗体の不存在が確認できない場合、または血液源が以前のフラビウイルス暴露を有することが知られている場合は、赤血球を洗浄して手動でパックする。
      1. BSCでは、50 mLの円錐管に全ヒト血液の30 mLを加え、リン酸緩衝生理食塩基(PBS)で最大50mLを上げる。
      2. 20分間3,500 x g の遠心分離機。
      3. 上清を吸引するか、10%漂白剤を含むトレイパンにやさしく注ぐか、または二級アンモニウムの希釈を働かせ、赤血球ペレットを捨てないように注意する。
      4. PBSを10mL加え、赤血球ペレットが再構成されるようBSCの底部に対して円錐管の底部を軽くタップします。懸濁液の容積をPBSで50mLまで持って来なさい。優しい反転で混ぜます。
      5. ステップ 2.2.2.1-2.2.2.4 を合計 4-6x 繰り返します。上清が透明であるか、わずかにピンク色で不透明でなくなったことを確認します。血清ピペットを使用してすべての上清を除去します。1-2 mLのPBSで赤血球ペレットを再懸濁します。
      6. 血液を組み立てる:パック赤血球の350 μL、10%スクロースの100 μL、熱不活性化FBSの200 μL、900 μM組換えATP、およびDMEMを使用して適切に希釈されたウイルスストックの2 mLを2%v/vヒートインFBS、および1%(vペンコシン)ストリンスチンを組み立てます。
  3. 感染していないマウスの皮膚と標準3 mLリザーバユニット(材料表)を重ね合わせ(他のオプションには、パラフィン膜、コラーゲン膜、またはソーセージケーシングが含まれます)。
  4. 白いペーパータオルの上に覆われた貯水池を置きます。一度に1mLのリザーバに感染性の血液ミールの〜2 mLを加えます。フィーダーの下のタオルを点検して、漏れの証拠がないか確認します。漏れが存在する場合は、フィーダーから血液を回収し、カバーを廃棄します。フィーダーをプラグで密封します。リークが存在しない場合は、もう一度確認してください。

3. 血液の食/プラークアッセイのバックティトレーション

  1. 調製された血液ミールの残りの体積を使用して、DMEMを2%v/v熱不活性化FBS、および1%(v/v)ペニシリン・ストレプトマイシンを補って、10xシリアル希釈シリーズ(すなわち、希釈された10倍から1,000,000xまでの範囲の6つの希釈)を行う。
  2. 最も希薄から最も濃縮までの24または12ウェルプレートのウェルに希釈のアリコート100 μL。
  3. 37°C、5%CO2インキュベーターで1時間インキュベートする。
  4. 1時間のインキュベーション期間の終わりに、プレートをBSCに戻し、メチルセルロースオーバーレイの1mLまたは2mLを24ウェルまたは12ウェルプレートに追加します。
  5. オーバーレイされたプレートを37°C、5%CO2インキュベーターに戻し、3〜7日間インキュベートします(ウイルス株依存)。
  6. インキュベーターに続いて、インキュベーターからプレートを取り出し、BSCに持ち込む。メチルセルロースオーバーレイを10%漂白剤または二級四級アンモニウム消毒剤を含むトレイパンに捨てます。
  7. PBSで各ウェルを2倍洗い、10%漂白剤または二重四級アンモニウムを含むトレイパンに洗浄を捨てます。
  8. メタノール:アセトン(1:1 v:v)の〜1 mLを加え、細胞が室温(RT)でBSCで少なくとも30分間プレートに固定できるようにします。有機廃棄物に関する制度方針に従ってメタノール:アセトンを廃棄する。
  9. 以下に説明する 2 つの方法のいずれかを使用して、ZIKV を視覚化します。
    1. メタノール:アセトンの除去に続いて、5分間の結晶バイオレット溶液(0.25%w/v 30%メタノール中の0.25%w/v)ですぐに染色する。水道水で2倍をすすいで乾燥させ、プラークまたは単層の破壊の証拠を目で直接視覚化します。
    2. あるいは、フォーカス形成アッセイを行う。
      1. 有機固定剤が残らないまでプレートを空気乾燥させます。
        注:これはBSCの外に〜2-3時間かかるはずですが、BSCまたは化学発煙フードで空気乾燥することによって加速することができます。
      2. 軌道プレートロッカーで、各ウェルを15分間無菌PBS(Mg2+ およびCa2+ フリー)で洗浄します。PBSを取り除き、各ウェルに1mLのブロッキング溶液(PBS + 3%FBS)を加え、RTで15分間ロックします。
      3. α-ZIKVまたはα-フラビウイルス一次抗体(例えば、フラビウイルス群ハイブリドーマD1-4G2-4-15[4G2])のウェルあたり100 μLをブロッキング溶液に1:2,000希釈して添加します。RTで最低4時間(好ましくは一晩、18時間を超えない)のロッキングでインキュベートする。
      4. 一次抗体を取り出し、軌道プレートロッカーでPBS(Mg2+ およびCa2+ フリー)をそれぞれ15分間洗浄します。
      5. 2次抗体(ラットαマウスHRP標識)のウェルあたり100 μLを加えて、ブロッキングバッファーで1:2,000希釈します。RTで1時間ロッキングでインキュベートします。
      6. 軌道プレートロッカーにPBS(Mg2+ とCa2+ 無料)を使用して、それぞれ15分間3倍洗浄します。
      7. アリコート100 μLの基質開発試薬(材料表)1ウェルあたり。RTで15分間のロックプレート。
      8. 基質を取り除き、プレート2xを水道水ですすいで、病巣/プラークの発生時の反応を停止します。水道水を注ぎ、プレートを空気乾燥させてから定量化します。
      9. ウイルス病巣を数えて、与えられたサンプルに存在するFFUの数を決定する。

4. 献血の管理

  1. Ae.アエジプティ蚊は、エブロセクション後2〜4日使用してください。スクリーニングされた蓋を持つ0.5 L段ボールカートンにメスの蚊を分類し、砂糖を奪う(一般的に感染性の血液粉の前に36-48時間)。水飽和綿球を介してアドリビタム水を提供します。
  2. 蚊が感染性の血液粉にさらされる朝に水飽和綿のボールを取り除きます。
  3. 透明なプラスチック製のグローブボックス内の給餌ユニットリードに人工の血液を含む貯水池を取り付けます。
  4. グローブボックス内に、50-100の飢えた Ae.aegypti 蚊を含むスクリーニングされた蓋付きの0.5 L段ボールカートンを、貯水池に取り付けられた給餌ユニットの下に置きます。
    注:適切に飢えた蚊は、通常20分以内に餌を与えます。(ZIKV)ウイルス価が~60分後にフィーダー内で減少する可能性があるため、摂食は、遅い集団でサンプルサイズを増加させるために必要に応じて延長することができますが、これは60分を超えて伸びるべきではありません。
  5. 給餌が完了したら、リザーバーを取り出し、作りたての10%漂白剤に浸します。
  6. -20°Cで30s、または冷蔵庫で5分間インキュベーションして蚊を冷たい麻酔をします。
  7. グローブボックス内で、氷の上のペトリ皿に蚊を注ぎます。アンエンゴーグ蚊から魅惑的なメスを数え、並べ替えます。70%エタノールで満たされた50 mLチューブ円錐管に浸漬して、未エングールド蚊を処分する。蚊がまだ麻酔されている間、0.5 L段ボールカートンに戻し、すぐに画面と蓋で覆います。カートンの余分な画面メッシュをトリミングし、テープでメッシュを固定します。
  8. 各カートンのスクリーンに滅菌濾過10%のスクロースで飽和した綿球を加えます。湿度を維持するために湿ったスポンジと大きなプラスチック二次容器にすべての蚊のカートンを置きます。
  9. 蚊のカートンを含む二次容器を、相対湿度10 ±%、16:8の光:暗いサイクルで、温度27±1°C(または関心領域の条件をシミュレートするのに適切な場合)のインキュベーターに入れます。実験が完了するまで、10%のスクロースへの アドリビタム アクセスで蚊を維持します。

5. サンプルの取得と処理

  1. 指定された日のポスト給餌では、グローブボックス内の機械的吸引器を使用して適切なカートンから所定の数の蚊を吸引する。必要な数の蚊が獲得された後、綿を丸く収集管にキャップします。
  2. 蚊を-20°Cで30秒間、または4°Cで5分間潜伏して蚊を冷たい麻酔をします。
  3. グローブボックス内で、氷の上のペトリ皿に蚊を注ぎます。2組の鉗子を使用して、各蚊の脚6本すべてを取り除き、滅菌されたステンレス鋼のボールベアリング(7/32")と500μLの蚊収集メディア(MCM)を含む事前にラベル付けされた2 mL底マイクロ遠心分離チューブに入れます。
  4. 蚊をミネラルオイルの滴にそっと置いて抑制し、油と蚊の頭とプロボシスとの接触を許さないように注意してください。
  5. 10 μL の熱不活化 FBS を充填した 10 μL ピペットチップに蚊のプロボシスを挿入します。
    注:または、ピペットは、スクロース、血液、またはミネラルオイルで満たすことができます。オイルは軽い顕微鏡によって唾液泡の直接視覚化を可能にする。
  6. 蚊に30分間唾液を入れるようにします。FBS + 唾液を含むマイクロピペットチップを100 μLのMCMを含むマイクロ遠心分離管に排出し、滅菌されたスチールボールベアリングと500 μLのMCMを含む別の2 mLラウンドボトムマイクロ遠心チューブに死体を入れます。体、脚、唾液に使用されるチューブにラベルが付いていることを確認して、3つのサンプルすべてが同じ蚊から発生したものであることを確認します。
  7. 蚊が唾液を吐いている間に、残りの蚊にステップ5.3-5.5を実行します。
  8. ボディと脚を含むチューブをBSC内に含まれるビーズの粉砕組織均質化装置に輸送する。ウイルス粒子を上清に解放するために、26 Hzですべての体と脚のサンプルを5分間トリチュレートします。細胞の破片をペレットに5分間200 x g で遠心分離してすべてのサンプルを明らかにする。
    注:この時点で、サンプルは-80°Cで凍結するか、すぐにアッセイすることができます。

6. 感染アッセイによるZIKVの検出

  1. BSCでは、感染性アッセイの発症前に、ベロ細胞(ウェルあたり105 細胞あたり10個の細胞)を用いて24の組織培養プレートを調製する。各々のラベルには、単一の蚊/サンプルのアイデンティティが付いています。
  2. サンプルを-80°Cで凍結した場合は、解凍を行う。
  3. 一度に1プレートずつサンプルを接種する前に、ベロ細胞プレートから培地を取り出します。
  4. 体や脚を含むサンプルの場合、ペレットから蚊の細胞の破片を邪魔しないように注意して、各ウェルに清澄化上清の100 μLを慎重にアリコートします。
    注:唾液サンプルは、必要に応じて、後の滴定のためにサンプルを保存するために細胞に接種する前にMCMで1:1(v/v)希釈することができます。
  5. プレートを37°C、5%CO2インキュベーターに移動し、1時間インキュベートします。
  6. プレートをBSCに戻し、各ウェルにメチルセルロースオーバーレイの〜1 mLを追加します。オーバーレイしたプレートを37°C、5%CO2インキュベーターに戻し、3-7日間インキュベートします(ウイルス/歪み依存)。
  7. ステップ 3.6-3.9 の説明に従って、固定と視覚化を実行します。
  8. 焦点形成アッセイによる採点に関しては、光顕微鏡で検査することで正のウェルを定量化する。ウェル内の細胞の細胞内染色の検出は、ウイルスの存在を示す。サンプルは、フォーカスポジティブまたは-負としてスコア付けされます。

Access restricted. Please log in or start a trial to view this content.

結果

Aeの3つの集団。 アメリカ大陸(サルバドール、ブラジル、ドミニカ共和国、およびリオグランデバレー、TX、米国)からの aegypti は、血液をベースにした血液中のチター(4、5、および6ログ10 FFU/mL)の範囲にわたって、アメリカ大陸(ZIKV Mex 1-7、チアパス州、メキシコ、2015)からのZIKVの発生株にさらされました。2日目、4日目、7日目、10日目、14日目に、蚊のサブセットを処理して感?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

ここで説明する方法は、ベクトル能力分析を行う一般化されたワークフローを提供します。一般的な枠組みとして、これらの方法論の多くは文献全体に保存されています。しかし、変更の余地は大きくあります(AzarとWeaver1でレビュー)。ウイルス(例えば、ウイルス系統、チャレンジウイルスの保存、ウイルス通過歴)、昆虫学(例えば、蚊集団の実験室コロニー形成、先天性免...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者らは開示するものは何もない。

謝辞

我々は、新興ウイルスおよびアルボウイルスのための世界参照センター(WRCEVA):ロバート・テッシュ博士、ヒルダ・グスマン、ケネス・プランテ博士、ジェシカ・プランテ博士、ディオンナ・シャルトン、ディヴィヤ・ミルチャンダニ博士が、私たちの他のグループのベクター能力実験に使用されるウイルス株の多くをキュレーションし、提供するたゆまぬ努力をしていることを認めます。提示された作品は、マクラフリン・フェローシップ・ファンド(SRA)とNIH助成金AI120942とAI121452によって資金提供されました。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
3mL Standard ReservoirR37P30Hemotek LtdInsectary Equipment
7/32" Stainless Steel 440 Grade C Balls4RJH9GraingerGrinding Media
Acetone, Histological Grade, Fisher Chemicals, Poly Bottle, 4L, 4/CaseA16-P4FisherScientificFixative
Adenosine 5'-triphospate disodium salt hydrat, microbial, BioReagent, suitable for cell cultureA6419-1GMilliporeSigmaReagent
Anti-Flavivirus Group Antigen Antibody, clone D1-4G2-4-15MAB10216MilliporeSigmaPrimary Antibody for focus forming assay
Anti-Mouse IgG (H+L) Antibody, Human Serum Adsorbed and Peroxidase-Labeled, 1.0mL/Bottle5450-0011KPL/SeracareSecondary Antibody for focus forming assay
BleachNC0427256FisherScientificDecontamination
Corning, Cell Culture Treated Flasks, 150cm2, Vented Cap, Case of 5010-126-34FisherScientificCell culture consumable
Costar Cell Culture Plates, 24-well, 5/bag, 100/case, Corning07-200-740FisherScientificCell culture consumable
Costar Cell Culture Plates, 96-well, 5/bag, 100/case, Corning07-200-91FisherScientificCell culture consumable
Crystal VioletC0775-100GMilliporeSigmaStain
Eppendorf Snap Cap Microcentrifuge Safe-Lock 2mL Tubes, 500/Case05-402-7FisherScientificPlastic consumable
Falcon 15mL Conical Centrigue Tubes14-959-70CFisherScientificPlastic consumable
Falcon 50mL Conical Centrigue Tubes14-959-49AFisherScientificPlastic consumable
Falcon Disposable Polystyrene Serological 10mL Pipets, 200/Case13-675-20FisherScientificPlastic consumable
Falcon Disposable Polystyrene Serological 1mL Pipets, 1000/Case13-675-15BFisherScientificPlastic consumable
Falcon Disposable Polystyrene Serological 25mL Pipets, 200/Case13-675-30FisherScientificPlastic consumable
Falcon Disposable Polystyrene Serological 5mL Pipets, 200/Case13-675-22FisherScientificPlastic consumable
Falcon Standard Tissue Culture Dishes08-772BFisherScientificPlastic consumable
Fetal Bovine Serum-Premium, 500mLS11150Atlanta BiologicalsCell culture reagent
Fisherbrand Economy Plain Glass Microscope Slides12-550-A3FisherScientificImmobilization of Mosquitos
FU1 FeederFU1-0Hemotek LtdInsectary Equipment; feeding units
Gibco DPBS with Calcium and Magnesium, 10 x 500mL Bottles140-040-182FisherScientificCell culture reagent
Gibco Fungizone, Amphotericin B, 250μg/mL, 50mL/Bottle15-290-026Fisher ScientificCell culture reagent
Gibco Penicillin-Streptomycin (10,000 U/mL), 100mL/Bottle, 20 Bottles/Case15-140-163FisherScientificCell culture reagent
Gibco, Tryptsin-EDTA (.25%), Phenol red, 20 x 100mL Bottles25-200-114FisherScientificCell culture reagent
Gibcom DMEM, High Glucose, 10 x 500mL Bottles11-965-118FisherScientificCell culture reagent
Human Blood, Unspecified Gender, Na-Citrate, 1 Unit7203706LampireBloodmeal preparation
InsectaVac Aspirator2809BBioquipInsectary Equipment
Methanol, Certified ACS, Fisher Chemicals, Amber Glass Bottle, 4L, 4/CaseA412-4FisherScientificFixative
Methyl cellulose, viscosity: 3,500-5,600 cP, 2 % in water(20 °C), 250g/BottleM0512-250GMilliporeSigmaCell culture reagent
Micro-chem Plus Disinfectant DetergentC849T34Thomas ScientificDecontamination; working dilution of dual quaternary ammonium
Mineral Oil, BioReagent, for molecular biologyM5904-5X5MLMilliporeSigmaImmobilization of Mosquitos
O-ringsOR37-25Hemotek LtdInsectary Equipment
Plastic PlugsPP5-250Hemotek LtdInsectary Equipment
PS6 Power Unit (110-120V)PS6120Hemotek LtdInsectary Equipment; power source
Rubis Forceps, Offset blades, superfine points4525BioquipInsectary Equipment
Sarstedt Inc, 2mL Screw Cap Microtube, Conical Bottom, O-ring Cap, Sterile, 1000/Case50-809-242FisherScientificPlastic consumable
Sucrose, BioUltra, for molecular biology84097-250GMilliporeSigmaReagent
ThermoScientific, ART Barrier Low Retention 1000μL Pipette Tips, 100 tips/Rack, 8 Racks/Pack, 4 Packs/Case21-402-487FisherScientificPlastic consumable
ThermoScientific, ART Barrier Low Retention 200μL Pipette Tips, 96 tips/Rack, 10 Racks/Pack, 5 Packs/Case21-402-486FisherScientificPlastic consumable
ThermoScientific, ART Barrier Low Retention 20μL Pipette Tips, 96 tips/Rack, 10 Racks/Pack, 5 Packs/Case21-402-484FisherScientificPlastic consumable
ThermoScientific, ART Barrier Low Retention, Extended Reach 10μL Pipette Tips, 96 tips/Rack, 10 Racks/Pack, 5 Packs/Case21-402-482FisherScientificPlastic consumable
TissueLyser II85300QIAGENHomogenization
TrueBlue Peroxidase Substrate Kit, 200mL5510-0030SeracareDeveloping solution for focus forming assay
VeroCCL-81American Type Culture CollectionMammalian cell line to amplify virus and conduct infectious assay
Vero C1008 [Vero 76, clone E6, Vero E6]CRL-1586American Type Culture CollectionMammalian cell line to amplify virus and conduct infectious assay

参考文献

  1. Azar, S. R., Weaver, S. C. Vector Competence: What Has Zika Virus Taught Us. Viruses. 11 (9), 867(2019).
  2. Souza-Neto, J. A., Powell, J. R., Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infection, Genetics and Evolution. 67, 191-209 (2019).
  3. Smith, D. R., Adams, A. P., Kenney, J. L., Wang, E., Weaver, S. C. Venezuelan Equine Encephalitis Virus in the Mosquito Vector Aedes taeniorhynchus: Infection Initiated by a Small Number of Susceptible Epithelial Cells and a Population Bottleneck. Virology. 372 (1), 176-186 (2008).
  4. Forrester, N. L., Coffey, L. L., Weaver, S. C. Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses. 6 (10), 3991-4004 (2014).
  5. Kramer, L. D., Ciota, A. T. Dissecting vectorial capacity for mosquito-borne viruses. Current Opinion in Virology. 15, 112-118 (2015).
  6. Kramer, L. D., Hardy, J. L., Presser, S. B., Houk, E. J. Dissemination Barriers for Western Equine Encephalomyelitis Virus in Culex tarsalis infected after Ingestion of Low Viral Doses. American Journal of Tropical Medicine and Hygiene. 30 (1), 190-197 (1981).
  7. Lounibos, L. P., Kramer, L. D. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus. The Journal of Infectious Diseases. 214, suppl 5 453-458 (2016).
  8. Heitmann, A., et al. Forced Salivation as a Method to Analyze Vector Competence of Mosquitoes. Journal of Visualized Experiments. (138), e57980(2018).
  9. Beerntsen, B. T., James, A. A., Christensen, B. M. Genetics of Mosquito Vector Competence. Microbiology and Molecular Biology Reviews. 64 (1), 115-137 (2000).
  10. Guo, X. X., et al. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerging Microbes & Infections. 5 (9), 102(2016).
  11. Secundino, N. F. C., et al. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process. Parasites & Vectors. 10 (1), 346(2017).
  12. Smith, D. R., et al. Venezuelan Equine Encephalitis Virus Transmission and Effect on Pathogenesis. Emerging Infectious Diseases. 12 (8), 1190-1196 (2006).
  13. Lazear, H. M., et al. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe. 19 (5), 720-730 (2016).
  14. Morrison, T. E., Diamond, M. S. Animal Models of Zika Virus Infection, Pathogenesis, and Immunity. Journal of Virology. 91 (8), 9-17 (2017).
  15. Reynolds, E. S., Hart, C. E., Hermance, M. E., Brining, D. L., Thangamani, S. An Overview of Animal Models for Arthropod-Borne Viruses. Comparative Medicine. 67 (3), 232-241 (2017).
  16. Rossi, S. L., et al. Characterization of a Novel Murine Model to Study Zika Virus. American Journal of Tropical Medicine and Hygiene. 94 (6), 1362-1369 (2016).
  17. Styer, L. M., et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathogens. 3 (9), 1262-1270 (2007).
  18. Azar, S. R., Diaz-Gonzalez, E. E., Danis-Lonzano, R., Fernandez-Salas, I., Weaver, S. C. Naturally infected Aedes aegypti collected during a Zika virus outbreak have viral titres consistent with transmission. Emerging Microbes & Infections. 8 (1), 242-244 (2019).
  19. Dzul-Manzanilla, F., et al. Evidence of vertical transmission and co-circulation of chikungunya and dengue viruses in field populations of Aedes aegypti (L.) from Guerrero, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene. 110 (2), 141-144 (2016).
  20. Grard, G., et al. Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus. PLoS Neglected Tropical Diseases. 8 (2), 2681(2014).
  21. Grubaugh, N. D., et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature. 546 (7658), 401-405 (2017).
  22. Guerbois, M., et al. Outbreak of Zika Virus Infection, Chiapas State, Mexico, 2015, and First Confirmed Transmission by Aedes aegyti Mosquitoes in the America. The Journal of Infectious Diseases. 214 (9), 1349-1356 (2016).
  23. Lundstrom, J. O., et al. Sindbis virus polyarthritis outbreak signalled by virus prevalence in the mosquito vectors. PLoS Neglected Tropical Diseases. 13 (8), 0007702(2019).
  24. Miller, B. R., Monath, T. P., Tabachnik, W. J., Ezike, V. I. Epidemic yellow fever caused by an incompetent mosquito vector. Tropical Medicine and Parasitology. 40 (4), 396-399 (1989).
  25. Brown, H. E., et al. Effectiveness of Mosquito Traps in Measuring Species Abundance and Composition. Journal of Medical Entomology. 45 (3), 517-521 (2008).
  26. Gorsich, E. E., et al. A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa. Parasites & Vectors. 12 (1), 462(2019).
  27. Azar, S. R., et al. ZIKV Demonstrates Minimal Pathologic Effects and Mosquito Infectivity in Viremic Cynomolgus Macaques. Viruses. 10 (11), 661(2018).
  28. Azar, S. R., et al. Differential Vector Competency of Aedes albopictus Populations from the Americas for Zika Virus. American Journal of Tropical Medicine and Hygiene. 97 (2), 330-339 (2017).
  29. Hanley, K. A., Azar, S. R., Campos, R. K., Vasilakis, N., Rossi, S. L. Support for the Transmission-Clearance Trade-Off Hypothesis from a Study of Zika Virus Delivered by Mosquito Bite to Mice. Viruses. 11 (11), 1072(2019).
  30. Hart, C. E., et al. Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States. Emerging Infectious Diseases. 23 (3), 559-560 (2017).
  31. Karna, A. K., et al. Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses. 10 (8), 434(2018).
  32. Roundy, C. M., et al. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerging Infectious Diseases. 23 (4), 625-632 (2017).
  33. Wilson, A. J., Harrup, L. E. Reproducibility and relevance in insect-arbovirus infection studies. Current Opinion in Insect Science. 28, 105-112 (2018).
  34. Hagan, R. W., et al. Dehydration prompts increased activity and blood feeding by mosquitoes. Scientific Reports. 8 (1), 6804(2018).
  35. Guo, X. X., et al. Host Feeding Patterns of Mosquitoes in a Rural Malaria-Endemic Region in Hainan Island, China. Journal of the American Mosquito Control Association. 30 (4), 309-311 (2014).
  36. Kuno, G. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. Journal of Medical Entomology. 47 (6), 957-971 (2010).
  37. Mayilsamy, M. Extremely Long Viability of Aedes aegypti (Diptera: Culicidae) Eggs Stored Under Normal Room Condition. Journal of Medical Entomology. 56 (3), 878-880 (2019).
  38. Althouse, B. M., et al. Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Neglected Tropical Diseases. 10 (12), 0002055(2016).
  39. Vasilakis, N., Cardosa, J., Hanley, K. A., Holmes, E. C., Weaver, S. C. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nature Reviews Microbiology. 9 (7), 532-541 (2011).
  40. Vasilakis, N., et al. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology. 358 (2), 402-412 (2007).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

159AedesAedes aegypti

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved