このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
可視域で動作する単純な分光光度計を使用して、グリコーゲン代謝の重要な酵素の活性を測定する技術が提示されます。
グリコーゲンは、細菌から動物に至るまで、さまざまな生物によってグルコースの貯蔵形態として合成されます。この分子は、α1,6結合の付加によって導入された分岐を有するα1,4結合グルコース残基の直鎖を含む。グリコーゲンの合成と分解がどのように制御され、グリコーゲンがその特徴的な分岐構造をどのように達成するかを理解するには、グリコーゲン貯蔵の酵素の研究が必要です。しかしながら、これらの酵素活性を研究するために最も一般的に使用される方法は、典型的には、すべての研究者が利用できるわけではない試薬または技術を使用する。ここでは、技術的に単純で費用効果が高く、それでもグリコーゲン貯蔵の制御に関する貴重な洞察を提供できる一連の手順について説明します。この技術は、330〜800nmの範囲で動作する分光光度計へのアクセスを必要とし、ユーザーが使い捨てのプラスチックキュベットを使用することを想定して説明されています。ただし、手順は容易に拡張でき、マイクロプレートリーダーで使用するために変更できるため、高度な並列分析が可能です。
グリコーゲンは自然界に広く分布しており、化合物は細菌、多くの原生生物、真菌、および動物に含まれています。微生物では、栄養素が制限されている場合、グリコーゲンは細胞の生存に重要であり、哺乳類などの高等生物では、グリコーゲンの合成と分解が血糖値を緩衝するのに役立ちます1,2,3。したがって、グリコーゲン代謝の研究は、微生物学や哺乳類生理学などの多様な分野にとって重要です。グリコーゲン代謝を理解するには、グリコーゲン合成(グリコーゲン合成酵素と分岐酵素)とグリコーゲン分解(グリコーゲンホスホリラーゼと枝切り酵素)の重要な酵素を研究する必要があります。グリコーゲン合成酵素、ホスホリラーゼ、分岐、および枝切り酵素活性のゴールドスタンダードアッセイは、放射性同位元素を使用します。例えば、グリコーゲンシンターゼは一般に、UDP-[14C]グルコース(動物および真菌酵素の場合)またはADP-[14C]グルコース(細菌酵素の場合)からのグルコースのグリコーゲン4,5への取り込みに続いて、停止した放射化学的アッセイで測定される。同様に、グリコーゲンホスホリラーゼは、[14C]グルコース-1-リン酸からグリコーゲン6へのグルコースの取り込みに続いて、グリコーゲン合成の方向に測定されます。枝切り酵素は、グリコーゲンホスホリラーゼ7によってグルコース-1-リン酸からα1,4結合鎖への[14C]グルコースの取り込みを刺激するこの酵素の能力を測定することによってアッセイされ、枝切り酵素活性は、グリコーゲン8に[14C]グルコースを取り込む酵素の能力に従うことによって決定されます。.放射性基質は非常に感度が高く、酵素活性の低い粗細胞抽出物に使用できますが、高価であり、放射性同位元素の使用に伴う規制要件の対象となります。これらの障壁により、特定のアッセイの使用は多くの労働者の手の届かないところにあります。しかしながら、長年にわたって、これらの酵素の測定に対する印象的な様々な分光光度法が記載されている。一般に、これらのアプローチは、最終的にはNADH / NADPHの生成または消費、またはグリコーゲンとヨウ素の間の着色錯体の生成の測定に依存しています。したがって、それらは単純であり、タングステンまたはキセノンフラッシュランプのみを備えた単純な分光光度計を使用して実行できます。
グリコーゲン合成酵素の分光光度アッセイは、グルコースが成長するグリコーゲン鎖に付加されるにつれて糖ヌクレオチド供与体から放出されるヌクレオシド二リン酸を測定することに依存している9,10。以下のプロトコルのセクション1に記載されているグリコーゲンシンターゼ活性を測定する手順は、Wayllaceら11によって概説されている手順の変更であり、カップリングスキームを以下に示します。
(グルコース)n + UPD-グルコース → (グルコース)n+1 + UDP
UDP + ATP → ADP + UTP
ADP + ホスホエノールピルビン酸 → ピルビン酸 + ATP
ピルビン酸 + NADH + H+ → 乳酸 + NAD+
グリコーゲン合成酵素は、UDP-グルコースからグリコーゲンにグルコースを付加します。この過程で生成したUDPは、ヌクレオシド二リン酸キナーゼ(NDPキナーゼ)によってUTPに変換され、ADPを生成する反応となる。次に、ADPはピルビン酸キナーゼの基質として機能し、ホスホエノールピルビン酸をリン酸供与体として使用してADPをリン酸化します。生成したピルビン酸は、NADHを消費する反応で酵素乳酸脱水素酵素によって乳酸に変換される。したがって、アッセイは、NADHが消費されるにつれて340nmでの吸光度の減少をモニタリングしながら、連続的に実施することができる。グルコース供与体としてADP-グルコースを必要とする酵素での使用に容易に適応します。ここでは、グリコーゲンシンターゼの作用によって放出されるADPがピルビン酸キナーゼによって直接作用されるため、カップリングステップはより単純です。
グリコーゲンホスホリラーゼ活性の測定に利用できるさまざまな分光光度アッセイがあります。古典的なバージョンでは、以下に示すように、酵素はグリコーゲン合成の方向に後方に駆動されます。
(グルコース)n + グルコース-1-リン酸 → (グルコース)n+1 +P i
時限間隔で、反応混合物のアリコートを除去し、遊離したリン酸塩の量を定量化する12,13。我々の手では、このアッセイは、ホスホリラーゼ作用に必要な高濃度のグルコース-1-リン酸と組み合わされた、グルコース-1-リン酸の多くの市販調製物中に容易に測定可能な遊離リン酸が存在するため、使用が制限されていた。むしろ、グリコーゲンがホスホリラーゼ13によって分解されるときに放出されるグルコース-1-リン酸を測定する代替アッセイを日常的に採用しています。以下に示す共役反応スキームが採用される。
(グルコース)n + Pi → (グルコース)n-1 + グルコース-1-リン酸
グルコース-1-リン酸 → グルコース-6-リン酸
グルコース-6-リン酸 + NADP+ → 6-ホスホグルコノラクトン + NADPH + H+
グルコース-1-リン酸はホスホグルコムターゼによってグルコース-6-リン酸に変換され、グルコース-6-リン酸は6-ホスホグルコノラクトンに酸化され、同時にNADP+がNADPHに還元されます。以下のプロトコルのセクション2に詳述されている手順は、Mendicino et al.14およびSchreiber & Bowling 15によって記述された方法に由来する。アッセイは、時間の経過とともに340nmでの吸光度が増加し、反応速度の決定を可能にする連続的に容易に実施することができる。
枝切り酵素活性の吸光光度測定は、ホスホリラーゼ限界デキストリン16に対する酵素の作用によって放出されるグルコースの測定に依存する。この化合物は、グリコーゲンホスホリラーゼでグリコーゲンを網羅的に処理することによって作られます。グリコーゲンホスホリラーゼ作用はα1,6-分岐点から4グルコース残基離れて停止するので、限界デキストリンにはグリコーゲンが含まれており、その外鎖は~4グルコース残基に短縮されています。ホスホリラーゼ限界デキストリンの調製は、Taylorら17 およびMakino & Omichi18によって開発されたものに由来する手順を用いて、本明細書に記載されている。
分岐解除は 2 段階のプロセスです。二官能性枝切り酵素の4-α-グルカノトランスフェラーゼ活性は、最初に3つのグルコース残基を分岐点から近くのα1,4結合グルコース鎖の非還元末端に転移する。分岐点に残っている単一のα1,6結合グルコース残基は、次いでα1,6-グルコシダーゼ活性19によって加水分解される。アッセイは通常、停止した方法で実行され、所与の時間(または一連の回)後に放出されるグルコースは、以下に示すように結合酵素アッセイで測定されます。
(グルコース)n → (グルコース)n-1 + グルコース
グルコース + ATP → グルコース-6-リン酸 + ADP
グルコース-6-リン酸 + NADP+ → 6-ホスホグルコノラクトン + NADPH + H+
産生されるNADPHの測定は、グルコース産生の尺度を与える。以下のプロトコルのセクション3で概説されている手順は、Nelsonら16によって記述されたものに基づいています。NADH/NADPHの消費または生成に依存する他の方法と同様に、アッセイは非常に感度が高いです。ただし、ホスホリラーゼ限界デキストリンから遊離グルコースを遊離させる可能性のあるアミラーゼまたは他のグルコシダーゼの存在は、重大な干渉を引き起こします(ディスカッションを参照)。
分岐酵素活性の比色測定は、グルコースのα1,4結合鎖がヨウ素に結合するらせん構造を採用し、着色錯体を形成するという事実に依存しています20。形成される複合体の色は、α1,4結合鎖の長さに依存する。したがって、α1,4結合グルコースの長くて大部分が分岐していない鎖からなるアミロースは、ヨウ素と濃い青色の複合体を形成します。対照的に、その外鎖が一般にわずか6〜8グルコース残基長のオーダーであるグリコーゲンは、橙赤色の複合体を形成する。アミロースの溶液を分岐酵素と共にインキュベートする場合、アミロースへの分岐の導入は、より短いα1,4結合グルコース鎖の生成をもたらす。したがって、アミロース/ヨウ素錯体の吸収極大はより短い波長にシフトします。ここで説明する手順は、Boyer & Preiss21 によって詳述されたものに由来し、分岐酵素活性は、時間の経過に伴う660nmでのアミロース/ヨウ素複合体の吸収の減少として定量化されます。
上記の議論からすぐに明らかなように、ヨウ素とα1,4-グルコース鎖の間に形成される錯体の色が鎖長によって変化するという事実は、グリコーゲン/ヨウ素複合体の吸光度スペクトルがグリコーゲン分岐の程度によって変化することを意味する。これは確かに事実であり、より分岐の少ないグリコーゲン/より長い外鎖を有するグリコーゲンは、より分岐している/より短い外鎖を有するグリコーゲンよりも長い波長の光を吸収する。したがって、ヨウ素染色反応を使用して、グリコーゲン分岐の程度に関する迅速で定性的なデータを得ることができます22。ヨウ素とのグリコーゲン錯体が特に強くない場合、オレンジ - 茶色が形成されます。しかしながら、発色は、飽和塩化カルシウム溶液22を含有させることによって増強することができる。これにより、メソッドの感度が約10倍になり、マイクログラム量のグリコーゲンをすぐに分析できます。下記のプロトコルのセクション4に記載される分岐の決定のためのアッセイは、Krisman22によって開発された手順から適応される。グリコーゲンサンプルをキュベット内のヨウ素溶液および塩化カルシウムと組み合わせ、330nmから800nmの吸収スペクトルを収集するだけで実施できます。吸光度の最大値は、分岐の程度が減少するにつれて、より長い波長にシフトします。
まとめると、ここで説明する方法は、グリコーゲン代謝の重要な酵素の活性を評価し、グリコーゲン分岐の程度に関する定性的データを取得するための簡単で信頼性の高い手段を提供します。
1. グリコーゲン合成酵素活性の測定
コンポーネント | 経路 | |
50 mM トリス pH 8.0 | 0.61 g のトリス塩基を ~ 80 mL の水に溶解します。 4°Cに冷却します。 HClでpHを8.0に調整し、水で容量を100mLまで上げます。 | |
20 mM HEPESバッファー | HEPES 0.477 g を ~ 80 mL の水に溶解します。 NaOHでpHを7.0に調整し、水で容量を100mLに補います。 | |
132 mM トリス/32 mM KCl バッファー pH 7.8 | 1.94 g のトリス塩基と 0.239 g の KCl を~90 mL の水に溶解します。 HClでpHを7.8に調整し、水で容量を100mLに補います。 | |
0.8% w/v カキグリコーゲン | 80 mgのカキグリコーゲンを量り、水に加えます。 最終容量を水で最大10 mLにし、穏やかに温める/混合してグリコーゲンを完全に溶解します。 | |
100 mM UDP-グルコース | 0.31 gのUDP-グルコースを水に溶解し、最終容量を1 mLまでにします。 アリコートで保存し、-20°Cで凍結します。 数ヶ月間安定しています。 | |
50 mM ATP | 0.414 g の ATP を ~ 13 mL の水に溶解します。 NaOHでpHを7.5に調整し、水で容量を15mLに補います。 -20°Cで凍結したアリコートで保存します。 数ヶ月間安定しています。 | |
100 mM グルコース-6-リン酸 pH 7.8 | 0.282 gのグルコース-6-リン酸を~7〜8 mLの水に溶解します。 NaOHでpHを7.8に調整します。 水で容量を10 mLまで作ります。 アリコートで-20°Cで冷凍保存します。 少なくとも6ヶ月間安定しています。 | |
40 mM ホスホエノールピルビン酸 | 4 mgのホスホエノールピルビン酸を0.5 mLの20 mM HEPESバッファーpH 7.0に溶解します。 -20°Cで保存してください。 少なくとも1週間安定しています。 | |
0.5 M マンガン2 | 9.90 gのMnCl2 を最終容量100 mLの水に溶解します。 | |
NDPキナーゼ | 凍結乾燥粉末を十分な水で再構成し、1 U/μl溶液を得る。 アリコートを調製し、液体窒素で凍結し、-80°Cで保存します。 少なくとも1年間安定しています。 |
表1:グリコーゲン合成酵素活性のアッセイに必要なストック溶液。
コンポーネント | 容量(μl) |
160 mM トリス/32 mM KCl バッファー pH 7.8 | 250 |
水 | 179 |
100 mM グルコース-6-リン酸、pH 7.8 | 58 |
0.8 % w/v カキグリコーゲン | 67 |
50 mM ATP | 80 |
4 mM NADH | 80 |
100 mM UDP-グルコース | 28 |
40 mM ホスホエノールピルビン酸 | 20 |
0.5 M マンガン2 | 8 |
最終巻 | 770 |
表2:グリコーゲンシンターゼ活性のアッセイのための組成物反応混合物。
注:セットアップを容易にするために、計画されたアッセイの数を完了するのに十分な数の上記の各試薬を含むマスターミックスを作成できます。
2. グリコーゲンホスホリラーゼ活性の測定
コンポーネント | 経路 | |
125 mM パイプ pH 6.8 | 3.78 gのパイプを水に溶かします。 NaOHでpHを6.8に調整し、水で容量を100mLに補います。 | |
8% w/v オイスターグリコーゲン | カキグリコーゲン0.8 gを量り、水に加える。 最終容量を水で最大10mLにし、穏やかに温める/混合してグリコーゲンを溶かします。 -20°Cで冷凍保存する。 | |
200 mM Naリン酸 pH 6.8 | 2.63gのNa2HPO 4.7H 2 Oおよび1.41 gのNaH2PO4を溶解する。水中のH2O。 水で容量を100 mLまで上げます。 | |
1 mMグルコース-1,6-ビスリン酸 | 2 mgのグルコース-1,6-ビスリン酸を4 mLの水に溶解します。 分注し、-20°Cで凍結保存します。 少なくとも数ヶ月間安定しています。 | |
10 ミリメートル NADP | 23 mgのNADPを3 mLの水に溶解します。. 分注し、-20°Cで凍結保存します。 少なくとも数ヶ月間安定しています。 |
表3:グリコーゲンホスホリラーゼ活性のアッセイに必要なストック溶液。
コンポーネント | 容量(μl) |
125 mM パイプバッファー pH 6.8 | 160 |
水 | 70 |
8% w/v オイスターグリコーゲン | 100 |
200 mM Naリン酸 6.8 | 400 |
1 mMグルコース-1,6-ビスリン酸 | 20 |
10 ミリメートル NADP | 20 |
最終巻 | 770 |
表4:グリコーゲンホスホリラーゼ活性のアッセイのための組成物反応混合物。
注:セットアップを容易にするために、計画されたアッセイの数を完了するのに十分な数の上記の各試薬を含むマスターミックスを作成できます。
3. グリコーゲン枝切り酵素活性の測定
コンポーネント | 経路 | |
100 mM マレイン酸バッファー | 1.61gのマレイン酸を~80mLの水に溶かします。 NaOHでpHを6.6に調整し、水で最終容量を100mLまでにします。 | |
300 mM トリエタノールアミン塩酸塩/3 mM MgSO4 pH 7.5 | 27.85gのトリエタノールアミン塩酸塩および0.370gのMgSO 4を溶解する。7H2O~400mLの水中。 NaOHでpHを7.5に調整し、水で最終容量500mLまで作ります。 | |
150 mM ATP/12 mM NADP | 1.24 g の ATP を ~ 10 mL の水に溶解します。 pHを監視し、NaOHを添加して、ATPが溶解するにつれてpHを~7.5に維持します。 0.138 gのNADPを加える。 NaOHでpHを~7.5に調整し、水で最終容量15mLまで作ります。-20°Cでアリコートで保存してください。 数ヶ月間安定しています。 | |
50 mM リン酸Na 緩衝液 pH 6.8 | 32.81gのNa2HPO 4.7H 2 Oおよび17.61gのNaH2PO4を溶解する。水中のH2O。 水で容量を最終容量5 Lまで上げます。 |
表5:グリコーゲン枝切り酵素活性のアッセイに必要なストック溶液。
4. グリコーゲン分岐酵素活性の測定
5. グリコーゲン分岐の定性的評価
グリコーゲン合成酵素活性の測定
図1 は、精製酵素を用いたグリコーゲン合成酵素アッセイの代表的な結果を示す。パネルAでは、わずかな遅れの後、約12分間、時間の経過とともに340nmでの吸収が直線的に減少しました。 図1A の吸収の変化率は~0.12吸光度単位/分であった。吸光度の変化速度は~0.010〜~0.20吸光度単位/分の間で最適で?...
一般に、提示されたすべての方法の主な利点は、低コスト、容易さ、速度、および特殊な機器への依存の欠如です。それらすべてに共通する主な欠点は、他の利用可能な方法と比較した感度です。NADH / NADPHの生産または消費を伴う手順の感度は簡単に推定できます。NADH/NADPHの吸光係数が6.22 M-1 cm-1であることを考えると、単純な算術で10~20 μMの濃度変化を容易に検出できるこ?...
この作業に関連する既知の利益相反はなく、その結果に影響を与えた可能性のあるこの作業に対する財政的支援はありませんでした。
著者は、Karoline DittmerとAndrew Brittinghamの洞察と多くの有益な議論に感謝したいと思います。この作業は、アイオワオステオパシー教育研究基金(IOER 03-17-05および03-20-04)からの助成金によって部分的に支援されました。
Name | Company | Catalog Number | Comments |
Amylopectin (amylose free) from waxy corn | Fisher Scientific | A0456 | |
Amylose | Biosynth Carbosynth | YA10257 | |
ATP, disodium salt | MilliporeSigma | A3377 | |
D-Glucose-1,6-bisphosphate, potassium salt | MilliporeSigma | G6893 | |
D-glucose-6-phosphate, sodium salt | MilliporeSigma | G7879 | |
Glucose-6-phosphate dehydrogenase, Grade I, from yeast | MilliporeSigma | 10127655001 | |
Glycogen, Type II from oyster | MilliporeSigma | G8751 | |
Hexokinase | MilliporeSigma | 11426362001 | |
Methacrylate cuvettes, 1.5 mL | Fisher Scientific | 14-955-128 | Methacrylate is required since some procedures are conducted at 340 nm or below |
β-Nicotinamide adenine dinucleotide phosphate sodium salt | MilliporeSigma | N0505 | |
β-Nicotinamide adenine dinucleotide, reduced disodium salt | MilliporeSigma | 43420 | |
Nucleoside 5'-diphosphate kinase | MilliporeSigma | N0379 | |
Phosphoenolpyruvate, monopotassium salt | MilliporeSigma | P7127 | |
Phosphoglucomutase from rabbit muscle | MilliporeSigma | P3397 | |
Phosphorylase A from rabbit muscle | MilliporeSigma | P1261 | |
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle | MilliporeSigma | P0294 | |
UDP-glucose, disodium salt | MilliporeSigma | U4625 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved