JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、皮下脂肪からのマウス前駆脂肪細胞の単離、成熟脂肪細胞への分化、およびインスリン抵抗性の誘導について説明しています。インスリン作用は、ウェスタンブロットを介したインスリンシグナル伝達経路のメンバーのリン酸化/活性化によって評価されます。この方法は、初代脂肪細胞におけるインスリン抵抗性/感受性の直接決定を可能にする。

要約

インスリン抵抗性は、その標的細胞に対するインスリンの減少した効果であり、通常、インスリン受容体シグナル伝達の減少に由来する。インスリン抵抗性は、2型糖尿病(T2D)および世界中で有病率の高い他の肥満由来の疾患の発症に寄与しています。したがって、インスリン抵抗性の根底にあるメカニズムを理解することは非常に重要です。いくつかのモデルは、 インビボインビトロの両方でインスリン抵抗性を研究するために使用されています。初代脂肪細胞は、インスリン抵抗性のメカニズムを研究し、この状態とインスリン感作薬の分子標的に対抗する分子を特定するための魅力的な選択肢です。ここでは、腫瘍壊死因子α(TNF-α)で処理した培養中の初代脂肪細胞を用いたインスリン抵抗性モデルを確立しました。

磁気細胞分離技術によってコラゲナーゼ消化されたマウス皮下脂肪組織から分離された脂肪細胞前駆細胞(APC)は、初代脂肪細胞に分化します。インスリン抵抗性は、インスリンシグナル伝達カスケードのメンバーのチロシンリン酸化/活性化を低下させる炎症誘発性サイトカインであるTNF-αによる治療によって誘導されます。インスリン受容体(IR)、インスリン受容体基質(IRS-1)、およびプロテインキナーゼB(AKT)のリン酸化の減少は、ウェスタンブロットによって定量されます。この方法は、脂肪組織におけるインスリン抵抗性を媒介するメカニズムを研究するための優れたツールを提供します。

概要

インスリンは、膵島β細胞によって産生される同化ホルモンであり、グルコースおよび脂質代謝の重要な調節因子です。その多くの機能の中で、インスリンはグルコース取り込み、グリコーゲン合成、糖新生、タンパク質合成、脂質生成、および脂肪分解を調節します1。インスリンとその受容体(IR)との相互作用後の初期分子シグナルは、IR2の固有のチロシンタンパク質キナーゼ活性の活性化であり、その結果、その自己リン酸化3と、その後のインスリン受容体基質(IRS)として知られるタンパク質ファミリーの活性化が起こり、アダプタータンパク質に結合してプロテインキナーゼのカスケードの活性化につながります4.インスリンは、ホスファチジルイノシトール3-キナーゼ(PI3K)-プロテインキナーゼB(AKT)とRas-マイトジェン活性化プロテインキナーゼ(MAPK)の2つの主要なシグナル伝達経路を活性化します。前者は、燃料恒常性の調節を含む多様な生理学的機能に関与する多数の下流エフェクターの活性化のための主要な分岐点またはノード4,5を構成し、後者は細胞の成長と分化を調節します4,6インスリン作用は、最終的に細胞型および生理学的状況に依存する7

主なインスリン応答性代謝組織の1つは脂肪組織です。白色脂肪組織は、ヒトおよびげっ歯類において最も豊富なタイプの脂肪であり、皮下脂肪(皮膚と筋肉の間)および内臓脂肪(腹腔内の臓器の周囲)に分布する。それらの大量を考えると、脂肪細胞または脂肪細胞は脂肪組織において最も豊富な細胞型である。これらの脂肪細胞は、茶色/ベージュ(熱発生性)、ピンク(乳腺内)、および白8,9です。白色脂肪細胞は、インスリン依存性プロセスであるトリグリセリドの形で体内の主要なエネルギー貯蔵を維持します。インスリンはグルコース輸送と脂質生成を促進しますが、脂肪分解または脂質分解を阻害します7,10。また、脂肪前駆細胞の脂肪細胞(成熟脂肪貯蔵細胞)への分化を促進します11

インスリン抵抗性は、正常なインスリンレベルが弱毒化された生物学的応答を引き起こし、代償性高インスリン血症をもたらすときに発生します12。インスリン抵抗性は、過体重および肥満5に関連する状態であり、組み合わせると2型糖尿病(T2D)および他の代謝性疾患13につながる。高インスリン血症は、末梢組織のインスリン抵抗性を補い、正常な血糖値を維持します14。しかし、最終的なβ細胞の喪失または枯渇は、インスリン抵抗性の悪化とともに、T2D5と一致する血糖値の上昇につながります。したがって、インスリン抵抗性および高インスリン血症は、肥満由来の代謝性疾患の発症に寄与し得る15。さらに、肥満は、脂肪組織におけるインスリン抵抗性を促進する慢性的な低悪性度の局所炎症を引き起こし得る151617さらに、線維症、炎症、血管新生および脂肪生成の減少などの脂肪組織の肥満由来の変化は、アディポネクチン血清レベルの低下(インスリン抵抗性改善剤)およびプラスミノーゲンアクチベーター阻害剤1(PAI-1)、遊離脂肪酸、および血流へのエキソソームなどの因子の分泌の増加をもたらし、インスリン抵抗性を悪化させる17

インスリン抵抗性の根底にある多くの側面は不明のままです。脂肪組織を含む主要な標的組織におけるインスリン抵抗性を媒介するメカニズムを研究するために、インビトロおよびインビボモデルが開発されました。in vitroモデルの利点は、研究者が環境条件をより細かく制御でき、特定の細胞タイプのインスリン抵抗性を評価できることです。特に、脂肪細胞前駆細胞(APC)は、ドナー組織の個々の表現型を有し、脂肪細胞株よりも生理機能をよりよく反映している可能性がある。インビトロでインスリン抵抗性を誘導する主な因子は、腫瘍壊死因子-α(TNF-α)である。TNF−αは、脂肪組織18において脂肪細胞およびマクロファージによって分泌される炎症誘発性サイトカインである。適切な脂肪組織のリモデリングと拡張に必要ですが19、TNF-αへの長期曝露は、in vivoの脂肪組織およびin vitroの脂肪細胞にインスリン抵抗性を誘導します20。いくつかの細胞型の慢性TNF-α治療は、IRおよびIRS-1の両方のセリンリン酸化の増加をもたらし、それによってチロシンリン酸化の減少を促進する21。セリン残基に対するIRS-1のリン酸化の増加は、IRチロシンキナーゼ活性を阻害し、慢性TNF-α治療がインスリン作用を損なう重要なメカニズムの1つである可能性があります22,23。TNF-αは、核内因子ĸBキナーゼβ(IKKβ)およびc-Jun N末端キナーゼ(JNK)のセリン/スレオニンキナーゼ阻害剤を含む経路を活性化します24。JNKは複雑な炎症誘発性転写プログラムを誘導しますが、IRS-16を直接リン酸化します。

インスリン抵抗性の病因を理解することは、T2Dに対する将来の治療法の開発を導くためにますます重要になっています。APCは、インスリンに対する感受性と耐性を含む脂肪細胞生物学の研究、および全身環境とは無関係に脂肪細胞の固有の特性を特定するための優れたモデルであることが証明されています。APCは、異なる脂肪デポから容易に得ることができ、適切な条件下で、成熟脂肪細胞に分化することができる。この方法では、脂肪細胞におけるインスリン抵抗性/感受性への直接的な影響を評価することができます。

Access restricted. Please log in or start a trial to view this content.

プロトコル

すべてのげっ歯類の実験は、UNAMの神経生物学研究所の生命倫理委員会、プロトコル番号075によって承認されました。

1. マウス脂肪細胞前駆細胞の単離

  1. 8〜10週齢の雄C57BL / 6マウスを安楽死させる(例えば、CO2吸入およびその後の頸部脱臼による)(単離あたり4匹)。.70%エタノールでこすってマウスを消毒し、屠殺直後に脂肪組織を得る。
    注:げっ歯類の安楽死後、すぐに脂肪組織を分離し、滅菌層流フード内ですべての手順を実行します。マウスは12時間の明暗サイクルの下に保たれ、食物と水に自由にアクセスできます。
  2. 各マウスから鼠径皮下脂肪組織を解剖する。筋肉、皮膚、またはその他の組織の除去を避けて脂肪組織のみを除去し、氷上で15 mLのタイプ1コラゲナーゼ溶液(1.5 mg / mL)を含む50 mLのコニカルチューブに収集します。1型コラゲナーゼをダルベッコ改変イーグル培地(DMEM)高グルコース-1%ウシ血清アルブミン(BSA)に溶解し、0.2 μmシリンジフィルターでろ過します。
  3. 滅菌手術用ハサミで脂肪組織を細かく切断し、1型コラゲナーゼ溶液と37°Cのオービタルシェーカー(150 rpm)で30分間インキュベートしてサンプルを消化します(脂肪とコラゲナーゼを含むチューブを水平位置に置いて、振とう面を大きくします)。10分ごとに消化をチェックして、消化が機能することを確認し(組織の分解が見える)、過剰消化を防ぎます( 補足図S1を参照)。
  4. 200 μmメッシュシリンジ(オートクレーブ処理済み)を使用してろ過し、コラゲナーゼで消化されていない組織を除去します。フィルターをチューブの端に通して、できるだけ多くの細胞を溶液に排出します。15 mLの冷DMEM-1% BSAを加えて消化を停止し、400 × g で4°Cで10分間遠心分離します。
  5. 成熟脂肪細胞およびほとんどの液層を含む最上層を吸引する。ペレットに触れたり乱したりしないでください。20 mLの冷リン酸緩衝生理食塩水(PBS)-2%ウシ胎児血清(FBS)を加え、ペレットを再懸濁します。400 × g で4°Cで5分間遠心分離します。
  6. 上清を除去し、まず上層を吸引し、残存する脂肪細胞および脂肪を除去する。ペレットを1 mLの塩化アンモニウムカリウム(ACK)溶解バッファー(赤血球を溶解するため)に再懸濁し、氷上で5分間インキュベートします。10 mLのPBS-2%FBSを加えて混合し、400 × g で4°Cで5分間遠心分離します。
  7. 上清を吸引し、ペレットを200 μLの抗Fc溶液(PBS-2%FBS [1:150]で希釈した精製ラット抗マウスCD16/CD32)に再懸濁して、目的の抗体によるFc受容体媒介結合を減らします。氷上で5分間インキュベートします。細胞懸濁液を、磁気セルセパレーターのプレチルドラックに収まる5 mLチューブに移し、400 × g で4°Cで5分間遠心分離します。
  8. 上清を除去し、CD31(PECAM-1)モノクローナル抗体(390)-ビオチン(1:100)とCD45モノクローナル抗体(30-F11)-ビオチン(1:100)の混合物200 μLを加え、よく混合し、氷上で15分間インキュベートします(抗Fc溶液で抗体希釈液を調製; 表1を参照)。400 μLのPBS-2% FBSを加え、400 × g で4°Cで5分間遠心分離します。
    注:CD31とCD45は、それぞれ内皮細胞と造血細胞のマーカーです。
  9. 上清を吸引し、100 μLの抗ビオチンマイクロビーズ(1:5)中で氷上で15分間インキュベートします(抗Fc溶液で抗体希釈液を調製します、 表1を参照)。400 μLのPBS-2% FBSを加え、400 × g で4°Cで5分間遠心分離します。
  10. 上清を廃棄し、ペレットを350 μLのPBS-2%FBSに再懸濁します。単一細胞懸濁液から細胞凝集体または大きな粒子を事前分離フィルター(70 μm)で除去します。まず、100 μLのPBS-2% FBSでフィルターを活性化し、細胞懸濁液をフィルターに通し(きれいなチューブに集め)、最後に100 μLのPBS-2% FBSでフィルターを洗浄します。
  11. 磁気セルセパレーターを使用した負の分離戦略を使用して、セルの磁気分離を実行します。
    1. サンプルをチルラックの位置Aに置き(ラックが予冷されていることを確認してください)、2つの空のチューブを位置BとCに配置して、それぞれラベルなしセルとラベル付きセルを回収します。
    2. 装置の電源を入れる前に、洗浄バッファーとランニングバッファーを対応するボトルに入れます。 DEPLETE プロトコルを使用して細胞の磁気分離を実行するように機器をプログラムします。
      注:このプロトコルは、回復が最優先される場合、正常な抗原発現を有する細胞(この場合、抗CD31および抗CD45で標識された細胞)を除去するための 標準モードで の枯渇のためのものです。
    3. 分離セクションで、 分離 する サンプル数 を選択し、 DEPLETE プロトコルを選択します。 [実行 ]を押して、分離を開始します。プログラムの最後に、標識されていない細胞を回収し、400 × g で4°Cで5分間遠心分離します。
  12. 上清を除去し、ペレットを500 μLの増殖培地に再懸濁します(表1)。
  13. 2.5%基底膜マトリックスでコーティングした12ウェルプレートの1ウェルにAPCを播種します(約50,000〜75,000個の細胞が得られます)。400 μLの2.5%基底膜マトリックスを加えて、各ウェルの表面全体を覆います。余分な溶液を取り除き、小さな層だけを残した直後に、プレートを層流フード内で少なくとも1時間(蓋なしで)乾燥させます。5%CO2 雰囲気中で37°Cでインキュベートします。細胞が80%コンフルエントに達するまで、48時間ごとに培地を交換します。
  14. 80%コンフルエントで培地を完全に除去し、350 μLのPBS-2%FBSで洗浄します。細胞を350 μLの0.05%トリプシン-EDTAで37°Cで2分間回収します。 2 mLの増殖培地を加え、新しい50 mLコニカルチューブに細胞を集め、400 × g で5分間遠心分離します。
  15. APCを、2.5%基底膜マトリックスで予めコーティングした12ウェルプレート(ウェルあたり10,000〜20,000細胞)に継代します。5%CO2で37°Cでインキュベートします。細胞が80%のコンフルエントに達するまで、48時間ごとに培地を交換します。
    注: APC は一度通過できます。その後、それらは増殖し分化する能力を失います。 補足図 S2 の APC 分離プロセスのワークフローを参照してください。

2. 脂肪細胞の分化とインスリン抵抗性の誘導

注:細胞を5%CO2で37°Cに維持し、培地の交換と滅菌フード内のTNF-αとインスリンによる処理を含む手順を実行します。

  1. 80%のコンフルエントで、分化プロセスを開始します。増殖培地を吸引し、各ウェルに3.3 nMの骨形成タンパク質(BMP4)を含む500 μLの分化培地(表1)と交換します。
  2. 48時間後、培地を分化培地(ウェルあたり500 μL)および分化カクテルと交換します(表1)。
  3. 72時間後に培地を取り出し、500 μLの新しい分化培地に100 nMのインスリンを加えます。
    注:細胞は、内部に小さな脂肪滴がある丸い外観を示し始めます。
  4. 分化培地を吸引し、48時間後に500 μLの単純培地-2%FBS(表1)と交換します。4 ng / mLのTNF-αでインスリン抵抗性を誘導します。TNF-α処理なしのコントロールウェルを含めます。
  5. 24時間のインキュベーション後、単純な培地0%FBSに4 ng / mLのTNF-αを加えます(表1)。TNF-α処理なしでコントロールウェルを維持します。
  6. 24時間後に100 nMインスリンを添加してインスリンシグナル伝達経路を活性化し、5%CO2 雰囲気中37°Cで15分間インキュベートします。培地を取り出し、500 μLのPBSで洗浄します。インスリン治療なしのコントロールウェルを含める。

3. ウェスタンブロットによるインスリンシグナル伝達経路の評価

  1. タンパク質の抽出と定量
    1. サンプル単離の直前に、500 μLのPBSで細胞の各ウェルを洗浄し、氷上で保持して、1%プロテアーゼ阻害剤カクテルを含む50 μLのRIPAバッファー(表1)で細胞を溶解します。ウェルの表面全体をチップでこすり、ライセートを0.6 mLの微量遠心チューブに移します(氷上に保ちます)。
    2. 回転シェーカーで4°Cで1時間インキュベートし、ボルテックスで混合し、8,000 × g で4°Cで15分間遠心分離し、上清を回収します(氷上に保ちます)。
    3. ブラッドフォードアッセイを使用してタンパク質濃度を決定します(定量するためにサンプルを希釈しないでください)。
    4. 40〜60μgに相当する必要量を取り、550rpmで振とうしながら97°Cで15分間インキュベートすることにより、6x Laemmliバッファー(表1)で変性させます。使用するまで凍結してください。
  2. SDS-ポリアクリルアミドゲル電気泳動
    1. 厚さ1.5 mmの7.5%ポリアクリルアミドゲルを用いてSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)を行います。ゲルをタンクに挿入し、ランニングバッファーで満たします(表1)。
    2. 3 μLのプレステインタンパク質標準物質をゲルの最初のウェルに加え、各サンプルを後続のウェルにロードします。
    3. ゲルを80 Vで約15分間実行して、サンプルがポリアクリルアミド濃縮器のゲルマトリックスに入ることを確認します。その後、電圧を90 Vに2.5時間、またはゲルの下端に37 kDaの分子量マーカーが見えるまで上げます。
    4. タンパク質をゲルからニトロセルロースメンブレンにセミドライチャンバーで25 Vで35分間移します。 事前に、ゲル、メンブレン、およびフィルターをトランスファーバッファー(表1)に数分間沈めます。
  3. ウェスタンブロット
    1. 移した後、0.1%トゥイーン20(TBS-T 0.1%)を含むトリス緩衝生理食塩水(TBS)(表1)でメンブレンを30rpmで振とうしながら3分間洗浄した。
    2. ブロッキング溶液(表1)でメンブレンを4°Cで1時間一定回転でブロッキングします。
    3. 分子量マーカーに従ってメンブレンを3つの部分に切断し、異なる一次抗体(ブロッキング溶液で希釈)とともに4°Cで一定回転で一晩インキュベートします:Phospho-IRS1(Tyr608)抗体(1:1,000)、180 kDaで予想されるバンド。リン酸化インスリン受容体β(Tyr1150/1151)抗体(1:1,000)、95 kDaの予想バンド。ホスホAkt(Ser473)抗体(1:1,000)、60 kDaの予想バンド。
    4. 膜をTBS-T 0.1%で5分間5回洗浄します。
    5. 膜を対応するペルオキシダーゼ共役二次抗体(ブロッキング溶液で希釈)とともに、室温で一定の回転で2時間インキュベートします:ペルオキシダーゼアフィニピュアロバ抗ウサギIgG(H+L)(1:5,000)。
    6. 膜をTBS-T 0.1%で5分間5回洗浄します。
    7. 化学発光検出システムを使用してタンパク質を検出します。製造元の指示に従って基板を準備します。
    8. ブロットをビニール袋に入れ、200 μLの化学発光基質を加えてメンブレンを完全に覆います。余分な素材を排出し、気泡を取り除きます。
    9. 化学発光に対応した高性能イメージングシステムで各ブロットを30〜60秒間露光します。
    10. メンブレンをストリップして(ウェスタンブロットセクションのステップ10〜13)、抗体と抗原の相互作用を切断し、ニトロセルロースメンブレンを再ブロットできるようにします。メンブレンを回収し、TBS-T 1%を50rpmで5分間ずつ3回洗浄します。
    11. 10 mLの0.2 M NaOHを50 rpmで7分間インキュベートします。
    12. 50rpmの水道水でそれぞれ3回5分間洗浄します。
    13. TBS-T 1%、50rpmで10分間洗浄します。
    14. ウェスタンブロットセクションの手順2〜9を繰り返し、1:1,000希釈を使用してローディングコントロールとして抗ベータチューブリン(55 kDa)でメンブレンをインキュベートします。
    15. ImageJソフトウェアを用いて各タンパク質についてデンシトメトリー解析25を行う(https://imagej.nih.gov/)。

Access restricted. Please log in or start a trial to view this content.

結果

過去数年間で、肥満とT2Dの有病率の増加により、脂肪組織のインスリン抵抗性を媒介するメカニズムの集中的な検索が促されました。ここで説明するプロトコルを使用すると、APCを成熟脂肪細胞に分化させて、インスリン抵抗性と感受性を評価できます。APCがコンフルエントに達すると、成熟脂肪細胞への分化とTNF αを介したインスリン抵抗性の誘導が完了するまでに10日かかります(

Access restricted. Please log in or start a trial to view this content.

ディスカッション

この論文は、TNF-αで処理した培養で初代脂肪細胞を使用するインスリン抵抗性を研究するための方法を提供します。このモデルには、初代脂肪細胞を、細胞環境因子を厳密に制御しながら、定義された条件下で長期間培養できるという利点があります26。アッセイ期間は15〜20日であるが、分化した脂肪細胞の割合の変動は実験間で起こり得る。初代脂肪細胞は、培養中に継?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者は利益相反を宣言しません。

謝辞

ダニエル・モンドラゴン、アントニオ・プラド、フェルナンド・ロペス・バレラ、マルティン・ガルシア・セルビン、アレハンドラ・カスティーリャ、マリア・アントニエタ・カルバホの技術支援、そして原稿を批判的に編集してくれたジェシカ・ゴンザレス・ノリスに感謝します。このプロトコルは、メキシコ国立技術協会(CONACYT)、教育助成金284771(Y.M.)によってサポートされました。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
1. Isolation mouse adipocyte precursor cells
ACK lysing buffer LONZA10-548E
Anti-Biotin Microbeads Miltenyi130-090-485
Anti-CD31eBioscience13-0311-85
AutoMACS Pro SeparatorMiltenyi
Basement membrane matrix (matrigel)Corning354234
bFGFSigmaF0291Growth factor
BSAEquitech-Bio, Inc.BAC63-1000
CD45 Monoclonal Antibody (30-F11) - Biotin eBioscience13-0451-85
Collagenase, Type 1Worthington BiochemLS004197
DexamethasoneSigmaD1756
DMEMGIBCO12800017
DMEM low glucoseGIBCO31600-034
EGFPeprotech315-09Growth factor
FBSGIBCO26140-079
ITS mixSigmaI3146
L-ascorbic acid 2-phosphateSigmaA8960
LIFMilliporeESG1107Growth factor
Linoleic acid-albuminSigmaL9530
MCDB 201 mediumSigmaM6770
NormocinInvivoGenant-nr-2
PDGF-BB Peprotech315-18Growth factor
Peniciline-StreptomycineBioWestL0022-100
Pre-Separation Filters (70 µm)Miltenyi130-095-823
Purified Rat Anti-Mouse CD16 / CD32 BD Pharmingen553142
Trypsin-EDTA GIBCO25300062
2. Adipocyte differentiation and insulin resistance induction
3-Isobutyl-1-methylxanthine [IBMX]SigmaI5879Differentiation cocktail
BMP4R&D Systems5020-BP-010Differentiation cocktail
DexamethasoneSigmaD1756Differentiation cocktail
InsulinSigmaI9278
RosiglitazoneCayman71742Differentiation cocktail
TNFαR&D Systems210-TA-005 
3. Evaluation of insulin signaling pathway by western blot
Anti-beta tubulin antibodyAbcamab6046
Bromophenol blueBioRad161-0404Laemmli buffer
EDTASigmaE5134RIPA buffer
EGTASigmaE4378RIPA buffer
FluorChem E systemProteinSimple
GlycerolSigmaG6279Laemmli buffer
GlycineSigmaG7126Running and Transfer buffer
IgepalSigmaI3021RIPA buffer
2- mercaptoethanolSigmaM3148Laemmli buffer
MethanolJT Baker907007Transfer buffer
NaClJT Baker3624-05TBS-T
NaFSigma77F-0379RIPA buffer
NaOH JT Baker3722-19
Na4P2O7Sigma114F-0762RIPA buffer
Na3VO4SigmaS6508RIPA buffer
Nitrocellulose membrane BioRad1620112
Nonfat dry milkBioRad1706404Blocking solution
Prestained protein standard BioRad1610395
Protease inhibitor cocktail SigmaP8340-5ML
Peroxidase AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson ImmunoResearch711-035-132
Phospho- Insulin Receptor β Cell signaling3024
Phospho-Akt (Ser473) AntibodyCell signaling9271
Phospho-IRS1 (Tyr608) antibodyMillipore9432
Saccharose JT Baker407205RIPA buffer
SDSBioRad1610302Running and laemmli buffer
SuperSignal West Pico PLUS Chemiluminescent SubstrateThermo Scientific34577
Tris-basePromegaH5135Running, transfer and laemmli buffer
Tris-HClJT Baker4103-02RIPA buffer - TBS
Tween 20SigmaP1379TBS-T

参考文献

  1. Elmus, G. B. Insulin signaling and insulin resistance. Journal of Investigative Medicine. 61 (1), 11-14 (2013).
  2. Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M., Kahn, C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature. 298 (5875), 667-669 (1982).
  3. Kasuga, M., Karlsson, F. A., Kahn, C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science. 215 (4529), 185-187 (1982).
  4. Taniguchi, C. M., Emanuelli, B., Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology. 7 (2), 85-96 (2006).
  5. Freeman, A. M., Pennings, N. Insulin Resistance. StatPearls. , StatPearls Publishing. Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK507839/ (2021).
  6. Petersen, M. C., Shulm, G. I. Mechanisms of insulin action and insulin resistance. Physiological Reviews. 98 (4), 2133-2223 (2018).
  7. Batista, T. M., Haider, N., Kahn, C. R. Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia. 64 (5), 994-1006 (2021).
  8. Unamuno, X., Frühbeck, G., Catalán, V. Adipose Tissue. Encyclopedia of Endocrine Diseases. Second edition. , Academic Press. 370-384 (2019).
  9. Cinti, S. Pink adipocytes. Trends in Endocrinology & Metabolism. 29 (9), 651-666 (2018).
  10. Kahn, B. B., Flier, J. S. Obesity and insulin resistance. The Journal of Clinical Investigation. 106 (4), 473-481 (2000).
  11. Klemm, D. J., et al. Insulin-induced adipocyte differentiation. The Journal of Biological Chemistry. 276 (30), 28430-28435 (2001).
  12. Wilcox, G. Insulin and insulin resistance. The Clinical Biochemist. Reviews. 26 (2), 19-39 (2005).
  13. Yohannes, T. W. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 13, 3611-3616 (2020).
  14. James, D. E., Stöckli, J., Birnbaum, M. J. The etiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology. 22 (11), 751-771 (2021).
  15. Wondmkun, Y. T. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metabolic Syndrime and Obesity: Targets and Therapy. 9 (13), 3611-3616 (2020).
  16. Hardy, O. T., Czech, M. P., Corvera, S. What causes the insulin resistance underlying obesity. Current Opinion in Endocrinology, Diabetes, and Obesity. 19 (2), 81-87 (2012).
  17. Klein, S., Gastaldelli, A., Yki-Järvinen, H., Scherer, P. E. Why does obesity cause diabetes. Cell Metabolism. 34 (1), 11-20 (2022).
  18. Lo, K., et al. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance. Cell Reports. 5 (1), 259-270 (2013).
  19. Asterholm, I. W., et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metabolism. 20 (1), 103-118 (2014).
  20. Hotamisligil, G. S., Murray, D. L., Choy, L. N., Spiegelman, B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proceedings of the National Academy of Sciences. 91 (11), 4854-4858 (1994).
  21. Ruan, H., Hacohen, N., Golub, T. R., Parijs, L. V., Lodish, H. F. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes. Nuclear factor-κB activation by TNF-α is obligatory. Diabetes. 51 (5), 1319-1336 (2002).
  22. Boucher, J., Kleinridders, A., Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology. 6 (1), 009191(2014).
  23. Hotamisligil, G. S., et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 271 (5249), 665-668 (1996).
  24. Copps, K. D., White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 55 (10), 2565-2582 (2012).
  25. Gassmann, M., Grenacher, B., Rohde, B., Vogel, J. Quantifying western blots: pitfalls of densitometry. Electrophoresis. 30 (11), 1845-1855 (2009).
  26. Skurk, T., Hauner, H. Primary culture of human adipocyte precursor cells: expansion and differentiation. Methods in Molecular Biology. 806, 215-226 (2012).
  27. Hausman, D. B., Park, H. J., Hausman, G. J. Isolation and culture of preadipocytes from rodent white adipose tissue. Methods in Molecular Biology. 456, 201-219 (2008).
  28. Macotela, Y., et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes. 61 (7), 1691-1699 (2012).
  29. Rodeheffer, M. S., Birsoy, K., Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell. 135 (2), 240-249 (2008).
  30. Hausman, D. B., DiGirolamo, M., Bartness, T. J., Hausman, G. J., Martin, R. J. The biology of white adipocyte proliferation. Obesity Reviews. 2 (4), 239-254 (2001).
  31. Kirkland, I. M., Tchkonia, T., Pirtskhalava, T., Han, J., Karagiannides, I. Adipogenesis and aging: does aging make fat go MAD. Experimental Geronotology. 37 (6), 757-767 (2002).
  32. Guo, W., et al. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. American Journal of Physiology. Endocrinology and Metabolism. 292 (4), 1041-1051 (2007).
  33. Ruan, H., Hacohen, N., Golub, T. R., Van Parijs, L., Lodish, H. F.Tumor necrosis factor-a suppresses adipocyte-specific genes and activatesexpression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-a is obligatory. Diabetes. 51 (5), 1319-1336 (2002).
  34. Jager, J., Gre ́meaux, T., Cormont, M., Le Marchand-Brustel, Y., Tanti, J. F. Interleukin-1b-induced insulin resistance in adipocytes throughdown-regulation of insulin receptor substrate-1 expression. Endocrinology. 148 (1), 241-251 (2007).
  35. Rotter, V., Nagaev, I., Smith, U. Interleukin-6 (IL-6) induces insulinresistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-a,overexpressed in human fat cells from insulin-resistant subjects. The Journal of Biological Chemistry. 278 (46), 45777-45784 (2003).
  36. Isidor, M. S., et al. Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. International Journal of Obesity. 46 (3), 535-543 (2021).
  37. Houstis, N., Rosen, E. D., Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 440 (7086), 944-948 (2006).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

192 TNF

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved