ゲノムワイド染色体コンフォメーションキャプチャー法Micro-C-XLを使用して、ヌクレオソーム分解能で三次元ゲノム構成をマッピングするためのプロトコルがここに示されます。
3次元(3D)染色体構成は、ゲノム制御と細胞型指定の主要な要因です。例えば、エンハンサーとして知られるシス調節因子は、3次元空間での相互作用 を介して 遠位プロモーターの活性を調節すると考えられています。Hi-Cなどのゲノムワイドな染色体コンフォメーションキャプチャー(3C)技術は、ゲノムが細胞内でどのように組織化されているかについての理解を一変させました。3次元ゲノム構成の現在の理解は、3次元空間における染色体のトポロジカルな組織化を解像できる解像度によって制限されています。Micro-C-XLは、染色体コンフォメーションキャプチャプロトコル中にマイクロコッカスヌクレアーゼ(MNase)を利用してゲノムを断片化することにより、クロマチンの基本単位であるヌクレオソームレベルで染色体フォールディングを分解能で測定します。これにより、測定におけるS/N比が向上し、他のゲノムワイドな3D技術と比較して、絶縁部位や染色体ループの検出が容易になります。本稿では、哺乳類細胞から高品質のMicro-C-XLサンプルを調製するための、視覚的に裏付けられた詳細なステップバイステップのプロトコルを紹介します。
Micro-C-XLは、ヌクレオソーム分解能で3Dゲノムコンフォメーションを測定するゲノムワイド技術です。Micro-C-XLは、広く使用されている近接ライゲーションベースのHi-C技術に基づいて構築されており、3Dゲノムがどのように組織化されているかについての理解を一変させました1。Micro-C-XLおよび最初の反復、Micro-Cは、最初に出芽酵母2,3で開発され、プロトコルが染色体ループおよび絶縁材の場所のような3Dゲノムの短距離特徴の検出の完全な潜在性を、実証した哺乳類細胞システムに後で合わせられた。このバージョンは、最近の哺乳類Micro-C-XL出版物4,5に基づいています。Micro-C-XLがMicro-Cに取って代わるため、以降、Micro-C-XLは原稿ではMicro-Cと呼ばれます。
Micro-CとHi-C6 の主な違いは、1)制限酵素と比較してミクロコッカスヌクレアーゼ(MNase)によるゲノム断片化、2)ホルムアルデヒドのみと比較して反応基間の原子間隔が大きい追加の架橋剤です。どちらのステップも、従来のHi-Cと比較してMicro-CのS/N比の向上に大きく貢献しています。フラグメンテーションサイズは、近接ライゲーションプロトコル中に3Dゲノム構成を分離できる分解能を制限します。MNaseは、アクセス可能なDNAを優先的に消化し、ヌクレオソームで保護されたDNAをそのまま残すヌクレアーゼです。MNaseシーケンシングを用いたヌクレオソームフットプリントは、ヌクレオソームがほとんどの真核生物ゲノムを完全にカバーしていることを示しました7。ヌクレオソームは、種や細胞の種類にもよりますが、平均160〜220 bpの間隔でゲノム全体に分布しているため、MNaseはゲノム構造の高解像度マッピングに理想的な酵素です。
Micro-C法でホルムアルデヒド(FA)と組み合わせて追加の架橋剤を使用すると、S/N比がさらに向上します2,8。反応基間に長い原子スペーサーを持つアミン特異的架橋剤は、タンパク質間架橋を促進します。これらは通常、ジスクシンイミジルグルタル酸(DSG)またはエチレングリコールビス-スクシンイミジルコハク酸塩(EGS)で、それぞれ7.7 Åおよび16.1 Åのスペーサーを備えています。EGSまたはDSGによるノイズの減少は、Micro-Cなどの高いフラグメンテーション速度の実験で特に顕著であり、おそらくランダムライゲーションイベントの速度の低下が原因で発生します8。
ESG/DSG架橋と制限酵素の複数の組み合わせを利用する最近開発されたHi-C 3.0プロトコルは、Hi-C実験のノイズを低減し、染色体ループと絶縁部位の検出を大幅に改善します8,9。それでも、さまざまな相互作用データの特徴をサイトごとに比較したところ、Micro-Cは、Hi-C 3.0と従来のHi-C8の両方と比較して、染色体ループや絶縁部位などの短距離の特徴の検出に優れていることがわかりました。しかし、Hi-C 3.0は、従来のHi-Cと比較して、短距離の特徴の検出を改善し、ゲノム区画化の強力な検出を維持しています。要約すると、染色体コンフォメーションキャプチャー法の選択は、客観的および生物学的な問題によって決定されるべきです。
ここでは、3Dゲノム構成を解明できるMicro-C実験を成功させるためのステップバイステップのプロトコルを提供します。
1. 細胞培養と架橋
2. MNase滴定
注:二重架橋細胞の分取ライブラリーを処理する前に、MNaseの最適濃度を決定するために、MNase滴定を実施する必要があります。
3. 分取 MNase 消化
4. DNA末端プロセシングと近接ライゲーション
5. ジヌクレオソームDNAの精製とサイズ選択
6. ストレプトアビジンビーズの調製
7. ストレプトアビジンプルダウンおよびオンビーズライブラリーの調製
8. 必要なPCRサイクルの推定
注:ライブラリ増幅に必要なPCRサイクルを推定することをお勧めします。通常、Micro-Cライブラリには8〜15サイクルのPCRが必要です。このステップは必須ではありませんが、過剰増幅を回避し、PCR重複のリスクを低減するのに役立ちます。
9. シーケンシングライブラリ増幅
10. DNAシーケンシングとデータ処理
Micro-Cライブラリの調製の成功は、プロトコルのいくつかのステップで評価できます。最も重要なステップは、適切なMNase消化度を選択することです。したがって、MNase濃度は、すべてのサンプルについてジヌクレオソームに対して70%〜90%のモノヌクレオソームを一貫して得られるように滴定する必要があります。クロマチン消化はユークロマチンとヘテロクロマチンで異なり、MNaseはヘテロクロマチンを消化する効率が低いことに注意することが重要です。したがって、最適な消化度は、eu-クロマチンとヘテロクロマチンの相対的な割合が細胞タイプ特異的であるため、関心のあるクロマチン領域と研究対象の細胞タイプに依存します。したがって、必要なMNase濃度を慎重に滴定し、まず低インプットシーケンシングによってMicro-C実験の成功を評価することをお勧めします。
MNaseの量を減らして処理したクロマチンの典型的なMNase滴定パターンを 図1Aに示します。ここでは、1回の反応で250,000個の細胞由来のクロマチンを4倍希釈したMNaseで消化します。最高濃度(10 U の MNase、レーン 2)では、クロマチンが過剰に消化され、ほぼモノヌクレオソーム DNA(~150 bp)のみで構成されています。特に、モノヌクレオソームバンドの中心は、MNase濃度が低下したサンプルの対応するバンドと比較して、アガロースゲル内で低くなっており、ヌクレオソームDNAの過剰消化を示しています。過剰に消化されたヌクレオソームは、近接ライゲーション反応で非効率的にライゲーションされます。したがって、レーン 2 のサンプルは Micro-C 実験には最適ではありません。レーン 3(2.5 U の MNase)は、Micro-C 実験にほぼ適した消化度を示します。ここでは、モノヌクレオソームバンドが優勢な種であり、ヌクレオソームの過剰消化を示すサブヌクレオソーム塗抹標本が減少します。ただし、まだ存在します。レーン 4 の消化度(0.635 U の MNase)は、この滴定例の Micro-C 実験に理想的な条件です。サブヌクレオソームDNAを含まない透明なモノヌクレオソームバンドが存在します。モノヌクレオソームDNAとジヌクレオソームDNAのバンド強度はほぼ等しく、モノヌクレオソーム収量は66%以上であることを示しています。ジヌクレオソームDNAはモノヌクレオソームDNAの約2倍(~320 bp 対 ~150 bp)であるため、DNAのモルあたりのバンド強度はモノヌクレオソームDNAと比較して2倍高いことは注目に値します。レーン 5(0.156 U の MNase)の消化度は、ヌクレオソームDNAがほとんどない未消化のクロマチンを示しているため、これは最適ではないサンプルです。
結論として、この例では、2.5 x 10 5 マウス ES 細胞を 0.625 U の MNase (200 μL 中の 1 x 106 細胞の2.5 U の MNase に相当)で消化することが、Micro-C 実験における分取消化の最も有望な出発点となります。ただし、レーン 3 とレーン 4 のサンプルに使用した条件の中間の MNase 濃度(200 μL 中の 1 x 106 細胞の MNase 5 U に相当)も考慮する必要があります。重要なことは、MNaseによるクロマチン消化は直線的にスケーリングできないため、分取消化を4倍以上にスケールすることは推奨されないことです。1 x 10 6細胞以上からMicro-Cライブラリーを調製するには、1 x 106細胞のアリコートでクロマチンを消化し、MNase不活性化後にそれらをプールすることをお勧めします。
近接ライゲーションプロトコルの成功を評価するには、近接ライゲーションではなくMNase消化されたインプットコントロール(ステップ3.8)を、1.5%アガロースゲル電気泳動によって近接ライゲーションしたサンプル(ステップ5.3)と比較する必要があります(図1B)。近接連結モノヌクレオソームバンドのサイズは、ジヌクレオソームとほぼ同じ300 bpです。したがって、モノヌクレオソームからジヌクレオソームへのバンドシグナル比は、主にモノヌクレオソーム(レーン1)からジヌクレオソーム(レーン3およびレーン4)にシフトする必要があります。このステップのアガロースゲルは、切除および精製されるジヌクレオソームDNAであるため、過負荷を避けるためにサンプルを複数のレーンに分割することをお勧めします。
調製したシーケンシングライブラリの質と量を最小限のPCRで評価することが推奨されます。ここでは、1μLのビーズ(全サンプルの1/20)のDNAを10μLのPCR反応で16サイクル増幅します。最小PCRライブラリーの総濃度は、通常、16回のPCRサイクル後に50〜500ngの範囲です。理論的には、これは残りの19 μLサンプルからの1〜10 μgのライブラリーにも16サイクル増幅された場合に相当します。総DNAから約100 ngのライブラリを生成するために必要なPCRサイクルの最小数を使用することを推奨します。PCRでの対数増幅を仮定すると、16サイクルで19 μLのインプットから得られたDNAの理論濃度を2で連続して割って、100 ngのライブラリを生成するために必要なPCRサイクル数を計算できます。例えば、16サイクル後の1 μLからの収量100 ngは、19 μLから増幅された収量1,900 ngに相当します。このシナリオでは、12サイクルで全DNAから118 ngのシーケンシングライブラリを生成するのが理想的です(1,900 ng/[2 × 2 × 2 × 2] = 118 ng)。その後、最小PCRで採取した残りの9 μLのサンプルを使用して、アガロースゲル電気泳動でライブラリの品質を評価します(図1C)。可視化では、420 bp で 1 つの異なるバンドが表示され、アダプター二量体(120 bp)のバンドは表示されません。より小さい片はまた現われることがあり、これらは未使用のPCRのプライマーに対応する。
次に、リソースを大量に消費するディープシーケンシングを行う前に、低インプットシーケンシングによる Micro-C サンプル調製の成功を解析し、確認することをお勧めします。典型的には、ライブラリは、5 x 106〜1 x 107のリード深度にシーケンシングされ、以下の基準に基づいて評価される:シーケンシングリード重複率、シス対トランス染色体相互作用率、およびシーケンシングリード配向頻度。Micro-Cライブラリは、cooler、pairtools、およびcooltools10、11、12を使用して、シーケンシングリードファイル(Fastq形式)からリードペアファイル(Bedpe形式)およびスケーラブルインタラクションマトリックス(CoolおよびMcool形式)までのデータを処理するフルサービスパイプラインであるDistillerで処理されます。パイプラインは、Micro−Cライブラリ10(https://github.com/open2c/distiller-nf)の品質を評価するのに理想的な要約ファイルも生成する。PCR重複率は、シーケンシングライブラリの複雑さに関する情報を提供し、生成された*.statsファイルから抽出できます。高品質のMicro-Cライブラリは、500万個以上の細胞から生成された場合、PCR複製率が5%〜10%未満です。特に、一部のシーケンシングプラットフォームでは、シーケンシングライブラリの複雑さとは無関係に、クラスター形成中にPCR複製が生成されます。図2Aは、2つの実験(1つは良いサンプル、もう1つは悪いサンプル)の相対的な重複率を示しています。この例では、両方のサンプルが許容可能なマップ レートを表示しています。Micro-Cライブラリの品質を評価するための次の基準は、シス対トランス比と読み取り方位周波数です。核内では、染色体は個々の染色体領域に生息しているため、他の染色体と相互作用することはめったにありません。経染色体相互作用の検出率が高いということは、ランダムライゲーションの割合が高いことを示しています。このレベルの分析では、不良サンプルは良品サンプルと比較して高い割合で染色体間相互作用を示したことに留意する必要があります(図2B)。Micro-Cでは、シスと染色体相互作用率が70%以上であることが望ましい。
Micro-CライブラリーのフラグメントサイズはジヌクレオソームDNAバンドと同程度で、近接ライゲーションされたサンプルと共精製し、実験を汚染する可能性があります。これらの汚染物質は、常にシスと染色体間の相互作用です。したがって、読み取り方向率も評価することが重要です。ジヌクレオソームのコンタミネーション率は、低インプットシーケンシングによって推定できます。ジヌクレオソームDNAは、MNaseによって切断されていない2つの隣接するヌクレオソームに由来します。したがって、結果として得られるシーケンシングリードは、常に順逆リード方向(FおよびR)を示し、リードペア間の距離は約320bpになります。一方、近接ライゲーションされたフラグメントは、4つの配向でライゲーションすることができ、F-R、R-R、R-F、およびF-Fのリードペアを、理想的には等量で生成します(図2C)。さらに、2 つの読み取りペア間のさまざまな距離が表示されます。ジヌクレオソーム汚染物質の量を推定するには、distiller が生成した *stats ファイルから読み取り方向の頻度を計算できます(図 2D)。注目すべきは、この研究では、F-Rリードの割合(赤)が良品サンプルと比較して不良サンプルで高く、これはリードオリエンテーションを距離別に層別化するとより顕著になりました(図2E)。F-R画分は、リードペアが<562 bpまたは≥562 bpの距離を持つリードに層別化されている場合、Micro-Cライブラリと比較してジヌクレオソームフラグメントが支配的です。ここでは、距離が <562 bp のリードの割合が F-R リードが支配的であるのに対し、距離が ≥562 bp のリードの割合は、考えられる 4 つの方向の間で均等な分布を示しており、F-R リードの全体的な過剰表現がジヌクレオソーム汚染物質に起因していることを示しています。サブセット化のしきい値として 562 bp を選択するかどうかは、生成された *stats ファイルのビニングによって定義されます。この品質管理には必要ありませんが、distiller によって生成される *pairs ファイルから距離を抽出することで、より明確なサブセット化を実現できます。ジヌクレオソームリードは、データ処理中に同定および無視できるため、Micro-Cサンプルの品質を低下させないことに注意することが重要です。ただし、3Dインタラクションに関する貴重な情報が含まれておらず、有益な読み物が希薄化します。
したがって、慎重なMNase滴定と低インプットシーケンシングによる徹底した品質管理は、Micro-C実験の品質を最適化するための最良のツールです。
図1:Micro-Cプロトコルの中間段階 。 (A)さまざまなMNase濃度で消化した2.5 x 105 個のマウスES細胞からのクロマチンのアガロースゲル電気泳動。モノヌクレオソーム、ジヌクレオソーム、トリヌクレオソームバンドは矢印で示されています。M:DNAラダー(レーン1/6);250,000 細胞あたり 10 U の MNase(レーン 2)。250,000 細胞あたり 2.5 U の MNase(レーン 3);250,000 細胞あたり 0.625 U の MNase(レーン 4)。250,000 細胞あたり 0.156 U の MNase(レーン 2)。(B)Micro-C で調製したサンプルの 1.0% アガロースゲル電気泳動(レーン 3 およびレーン 4)と MNase 消化インプットコントロール(レーン 1)。レーン 1 とレーン 2(M:DNA ラダー)は、モノヌクレオソームからジヌクレオソームへのフラグメント強度の相対的な変化を強調するために強化されています。モノヌクレオソームバンドとジヌクレオソームバンドは矢印で示されています。近接ライゲーションサンプルのジヌクレオソームバンドは、ジヌクレオソームとMicro-CライブラリーDNAを組み合わせたものです。(C)1 μLのサンプルから増幅したMicro-Cシーケンシングライブラリの1.0%アガロースゲル電気泳動で品質を評価しました。レーン1(M):DNAラダー;レーン 2 (S): Mirco-C ライブラリ。(D)最終的な Micro-C ライブラリのフラグメントアナライザートレース。 この図の拡大版をご覧になるには、ここをクリックしてください。
図2:良品サンプルと不良品サンプルの低入力シーケンシングのサンプル統計。 (A)マッピングされた読み取り(緑)とマッピングされていない読み取り(赤)の割合の棒グラフ。(B)シスと染色体間相互作用をマッピングするリードの正規化された画分。データ・セットは、読み取りられた cis マッピングに正規化されました。シスマッピングリードは、ペアエンドシーケンシングされたサンプルの1回目と2回目のリード間の距離(≤1 kbp(黄色)、>1 kbpおよび≤10 kbp(オレンジ)、および>10 kbp(赤))によって層別化されました。(C)ジヌクレオソームサイズの潜在的な分子種の模式図。(D)良品サンプルと不良品サンプルのすべてのリードのリードペア配向率。(E)パネル(D)と同じだが、距離(左<562bp、右≥562bp)で層別化。 この図の拡大版をご覧になるには、ここをクリックしてください。
コンポーネント | 1倍速 | 4.4倍速 |
10倍速NEBuffer 2.1、 | 10 μL | 44 μL |
2 μL 100 mM ATP | 2 μL | 8.8μL |
100 mM DTT (英語) | 5 μL | 22 μL |
H2O | 68 μL | 299.2μL |
10 U/μL T4 PNK | 5 μL | 22 μL |
トータル | 90 μL | 396 μL |
表1:Micro-Cマスターミックス1。 咀嚼反応終了のためのマスターミックスの組成。
コンポーネント | 1倍速 | 4.4倍速 |
1 mM ビオチン-dATP | 10 μL | 44 μL |
1 mM ビオチン-dCTP | 10 μL | 44 μL |
dTTPとdGTPの10 mMミックス | 1 μL | 4.4μL |
10x T4 DNAリガーゼバッファー | 5 μL | 22 μL |
200倍速BSA | 0.25μL | 1.1μL |
H2O | 23.75 μL | 104.5μL |
表2:Micro-Cマスターミックス2。 末端標識反応のためのマスターミックスの組成。
コンポーネント | 1倍速 | 4.4倍速 |
10x NEB T4 リガーゼ反応バッファー | 50 μL | 220 μL |
H2O | 422,5 μL | 1859μL |
T4 DNAリガーゼ | 25 μL | 110μL |
表3:Micro-Cマスターミックス 3. 近接ライゲーション反応のためのマスターミックスの組成。
コンポーネント | 1倍速 | 4.4倍速 |
10倍速NEBuffer 1.1 | 20 μL | 88μL |
H2O | 180μL | 792 μL |
ExoIIIヌクレアーゼ | 10 μL | 44 μL |
表4:Micro-Cマスターミックス 4. ビオチン除去反応のためのマスターミックスの組成。
Micro-C実験の成功は、慎重に実行する必要があるプロトコルのいくつかの重要なステップにかかっています。まず、追加の架橋剤DSGまたはEGSとの架橋により、細胞の種類に応じて細胞の凝集につながる可能性があります。架橋反応に0.1%〜0.5%のBSAを添加すると、架橋効率に影響を与えることなく凝集が大幅に減少します。非効率的な架橋は、ランダムなライゲーションを示すトランス染色体相互作用の割合の増加につながる可能性があります。このプロトコルの第2、しかし最も重大なステップはMNaseのchromatinの消化力である。クロマチン消化が最適でないと、近接ライゲーションが非効率的になったり(過剰消化)、非近接ライゲーションされたジヌクレオソームの発現率が上昇したり(消化不足になったりします)。ライゲーション反応の効率は、アガロースゲル電気泳動(図1B)によって評価でき、さらに低インプットシーケンシングによって最もよく推定されます。低インプットシーケンシングにより、高い重複率(非効率的なライゲーション)またはジヌクレオソーム率の増加が明らかになった場合は、MNase消化度を再評価する必要があります。特に、プロトコル実行時にサンプルが失われると、ライブラリの複雑さが軽減される可能性があります。サンプルの濃度は、DNA精製後(ステップ5.3)または最小限のPCR(ステップ8)で評価するのが最適です。DNA精製後の5×106個の哺乳 類細胞由来のDNAの総収量は、典型的には>2μgである。DNA濃度は、MNase消化、ExoIII消化、およびDNA精製後に制御する必要があります。内因性ヌクレアーゼは、その存在量が細胞タイプ特異的および種特異的であり、DNA分解の原因となる可能性があります。さらに、カラムベースのDNA精製では、脱タンパク質反応によるSDSとの相溶性がないため、サンプルの損失につながる可能性があります。このステップでDNA濃度が低い場合は、エタノール沈殿を考慮することができます。
Micro-Cはサンプル特異的なMNase滴定を必要とするため、さまざまなモデル生物、胚や単一細胞、オルガノイド、患者生検などの小さな細胞集団にMicro-Cを適用することは困難です。ここで、Hi-C 3.0は、配列特異的制限エンドヌクレアーゼによる終末反応を用いた確立された代替手段を提供する8,9。
Micro-Cは、広いダイナミックレンジと低いS/N比を備えた、広く適用可能な高分解能染色体コンフォメーション技術であり、染色体ループなどの短距離染色体の特徴4,5,8の調査に特に適しています。Micro-Cの分解能は、Hi-Cの検出限界を超えるプロモーター-エンハンサーループを捕捉することを可能にし、ゲノム構成と制御の関係をより詳細に解析することを効率的に可能とする13,14,15。さらに、最近では、DNA捕捉戦略をMicro-Cと組み合わせることで、標的ゲノム遺伝子座の遺伝子座特異的分解能を前例のないレベルに引き上げ、3Dゲノムの超微細構造に関する新たな洞察を明らかにしています16,17,18。要約すると、Micro-Cとその誘導体は、転写制御、ひいては細胞型の分化と維持における3Dゲノムの役割を解剖するための重要な技術になると考えています。
著者は何も開示していません。
Christl Gaubitz氏とKathleen Stewart-Morgan氏には、この原稿を批判的に読んでいただいたことに感謝します。私たちは、私たちのラボを設立するための彼らのサポートのためにAnja GrothとGrothラボに感謝します。CPR/reNEW Genomics PlatformのスタッフであるH. Wollmann氏、M. Michaut氏、A. Kalvisa氏に感謝いたします。ノボ ノルディスク財団幹細胞医学センター(reNEW)は、ノボ ノルディスク財団の助成金番号NNF21CC0073729の支援を受けています。ノボ ノルディスク財団タンパク質研究センター(CPR)は、ノボ ノルディスク財団の助成金番号NNF14CC0001の支援を受けています。ノボ ノルディスク幹細胞医学センター(reNEW Copenhagen)のブリックマン研究室には、マウスES細胞を提供していただきました。
Name | Company | Catalog Number | Comments |
1 mM Biotin dATP | Jenna Bioscience | NU-835-Bio14-S | |
1 mM Biotin dCTP | Jenna Bioscience | NU-809-BioX-S | |
10 mM dGTP | NEB | N0442S | |
10 mM dTTP | NEB | N0443S | |
10 U/ml T4 PNK | NEB | M0201L | |
100 U/L Exonuclease III | NEB | M0206L | |
10x NEBuffer 1.1 | NEB | B7001S | |
10x NEBuffer 2.1 | NEB | B7202S | |
10x T4 DNA Ligase buffer | NEB | B0202A | |
1x DPBS w/o Mg2+ and Ca2+ | ThermoFisher | 14190144 | |
1x LIF | |||
2_Mercaptoethanol 50 mM | Gibco | 31350010 | 0.1 mM b-mercaptoethanol |
37% Formaldehyde | Sigma Aldrich | 252549-500ML | Caution. See manufactures MSDS |
400 U/ml T4 DNA Ligase | NEB | M0202L | |
5 U/ml Klenow Fragment | NEB | M0210L | |
Agarose | BIO-RAD | 1613102 | Caution. See manufactures MSDS |
BSA 20mg/ml | NEB | B9000S | |
CaCl2 | |||
cell counter | |||
Dimethyl Sulfoxide (DMSO) | Sigma Aldrich | D8418-100ML | Caution. See manufactures MSDS |
Dynabeads MyOne Streptavidin C1 | Invitrogen | 65001 | |
DynaMag-2 Magnet | Invitrogen | 12321D | refered to as: magnet magnet for 1.5 ml tubes |
DynaMag-PCR Magnet | Invitrogen | 492025 | refered to as: magnet magnet for PCR tubes |
EDTA Ultrapure 0.5M pH 8.0 | Invitrogen | 15575-038 | |
EGTA Ultrapure 0.5M pH 8.0 | BioWorld | 40121266-1 | |
Ethanol 96% | VWR Chemicals | 20824365 | quality control system |
Ethidium Bromide | Invitrogen | 15585-011 | |
Ethylene glycol bis(succinimidyl succinate) (EGS) | ThermoFisher | 21565 | |
Fetl Bovin Serum | Sigma Aldrich | F7524 | 15% FBS |
Gel Loading dye purple (6X) | NEB | B7024S | |
Glycine | PanReac AppliChem | A1067.0500 | |
Halt Proteinase inhibitor (100x) | ThermoFisher | 78430 | Caution. See manufactures MSDS |
IGEPAL CA-630 (NP-40) | Sigma Aldrich | 18896-50ML | |
MgCl 1 M | Invitrogen | AM9530G | |
Micrococcal Nuclease (MNase) | Worthington | LS004798 | |
mouse embryonic stem cells | |||
NaCl | Sigma Aldrich | S9888-1KG | |
NEBNext Multiplex Oligos for Illumina (Dual Index primers) | NEB | E7600S | amplification primers for sequencing libraries |
NEBNext Ultra II DNA library prep kit for Illumina | NEB | E7645L | sequencing library preparation kit |
NEBNext Ultra II Q5 Master mix | NEB | M0544S | Caution. See manufactures MSDS |
Non-Essential Amino Acids Solution | Gibco | 11140050 | 1x NEAA |
Penicillin-Streptomycin (10,000 U/mL) | Gibco | 15140148 | 1% Pen-Strep |
Proteinase K (40 mg/ml) | GoldBio | P-480-1 | Caution. See manufactures MSDS |
QIAquick Gel extraction kit | QIAgen | 28706 | refered to as: DNA gel elution kit |
QIAquick PCR purification kit | QIAgen | 28106 | refered to as: commercial DNA purification kit |
Qubit dsDNA HS Assay kit | Invitrogen | Q32854 | high sensitivity DNA quantification instrument |
Quick load purple 1kb plus DNA Ladder | NEB | N0550S | |
SPRIselect size selection beads | Beckman Coulter | B23319 | paramagnetic beads |
ThermoMixer C | Eppendorf | 5382000015 | refered to as: thermomixer |
Tris | Merck | 10708976001 | |
Trypsin | |||
Tween20 | Sigma Aldrich | P7949-100ML | |
Ultrapure 10% SDS | Invitrogen | 15553-035 | |
Ultrapure Phenol Chloroform Isoamyl Alcohol (PCI) | Invitrogen | 15593-031 | |
Fragment Analyzer |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請さらに記事を探す
This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved