JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、パルミチン酸誘発 インビトロ モデルにおける非アルコール性脂肪肝疾患に対するプラチコジンDの保護効果を調査します。

要約

非アルコール性脂肪性肝疾患(NAFLD)の発生は、世界中で驚くべき速度で増加しています。 プラティコドングランディフロラム は、さまざまな病気の治療のための伝統的な民族医学として広く使用されており、毎日の食事に組み込むことができる典型的な機能性食品です。研究によると、プラ ティコドングランディフロラムの主要な有効成分の1つであるプラチコジンD(PD)は、バイオアベイラビリティが高く、NAFLDの進行を大幅に緩和することが示唆されていますが、その根本的なメカニズムはまだ不明です。この研究は、 インビトロでのNAFLDに対するPDの治療効果を調査することを目的としています。AML-12細胞を300μMパルミチン酸(PA)で24時間前処理し、 in vitroでNAFLDをモデル化した。次いで、細胞をPDで処理するか、または24時間PD処理を受けなかった。活性酸素種(ROS)を2',7'-ジクロロ-ジヒドロ-フルオレセインジアセテート(DCFH-DA)染色を用いて分析し、ミトコンドリア膜電位をJC-1染色法により決定した。さらに、細胞ライセート中のLC3-II/LC3-Iおよびp62/SQSTM1のタンパク質発現レベルをウェスタンブロッティングにより解析した。PDは、対照群と比較して、PA治療群におけるROSおよびミトコンドリア膜電位レベルを有意に低下させることがわかった。一方、PDは、対照群と比較して、PA治療群でLC3-II / LC3-Iレベルを上昇させ、p62 / SQSTM1レベルを低下させました。結果は、PDが酸化ストレスを軽減し、オートファジーを刺激することによってin vitro でNAFLDを改善することを示しました。この インビトロ モデルは、NAFLDにおけるPDの役割を研究するための有用なツールです。

概要

プラティコドングランディフロラス(PG)、プラティコドングランディフロラス(Jacq)の乾燥根です。A.DC.は、伝統的な漢方薬(TCM)で使用されています。主に中国の北東部、北部、東部、中部、南西部で生産されています1。PG成分としては、トリテルペノイドサポニン、多糖類、フラボノイド、ポリフェノール、ポリエチレングリコール、揮発油、ミネラル2などが挙げられる。PGは、アジアで食品や漢方薬として使用されてきた長い歴史があります。伝統的に、このハーブは肺疾患に対する薬を作るために使用されていました。現代の薬理学はまた、他の疾患を治療するためのPGの有効性の証拠を提供する。研究によると、PGはさまざまな薬物誘発性肝障害モデルに治療効果があることが示されています。PGまたはプラチコジン抽出物の栄養補助食品は、高脂肪食誘発性肥満およびそれに関連する代謝性疾患を改善することができます3,4,5PG由来の多糖類は、マウスのLPS/D-GalNによって引き起こされる急性肝障害の治療に使用できます6。さらに、PGの根からのサポニンは、高脂肪食誘発性非アルコール性脂肪性肝炎(NASH)を改善します7。さらに、PGの最も重要な治療成分の1つであるプラチコジンD(PD)は、ヒト肝細胞癌(HepG2)細胞における低密度リポタンパク質受容体の発現および低密度リポタンパク質の取り込みを増強することができる8。さらに、PDはまた、アポトーシスを誘導し、HepG2細胞における接着、遊走、および浸潤を阻害することができる9,10。したがって、この研究では、マウス肝癌AML-12細胞を使用してin vitroモデルを構築し、このモデルにおけるPDの薬理学的効果と根底にあるメカニズムをさらに研究します。

非アルコール性脂肪性肝疾患(NAFLD)という用語は、単純性脂肪症、NASH、肝硬変、および肝細胞癌を含む肝疾患のグループを指す11。NAFLDの病因は不完全に理解されていますが、古典的な「ツーヒット」理論から現在の「マルチヒット」理論まで、インスリン抵抗性はNAFLDの病因の中心であると考えられています12,13,14研究によると、肝細胞のインスリン抵抗性は遊離脂肪酸の増加につながり、肝臓に沈着して肝臓を脂肪にするトリグリセリドを形成します15,16。脂肪の蓄積は、脂肪毒性、酸化ストレス誘発性ミトコンドリア機能障害、小胞体ストレス、および炎症性サイトカイン放出を引き起こし、NAFLDの病因と進行を引き起こす可能性があります17,18。さらに、オートファジーは、細胞のインスリン感受性、細胞脂質代謝、肝細胞損傷、および自然免疫の調節に関与しているため、NAFLDの病因にも役割を果たします19,20,21。

NAFLD22,23の病因および潜在的な治療標的を探索するための基礎を提供するために、様々な動物モデルおよび細胞モデルが確立されている。ただし、単一の動物モデルは、NAFLD24のすべての病理学的プロセスを完全に模倣することはできません。動物間の個人差は異なる病理学的特徴をもたらす。NAFLDのin vitro研究で肝細胞株または初代肝細胞を使用すると、実験条件で最大の一貫性が保証されます。肝脂質代謝調節不全は、NAFLD25における肝細胞脂質液滴蓄積のレベルを高める可能性があります。オレイン酸やパーム油などの遊離脂肪酸は、高脂肪食によって引き起こされるNAFLDを模倣するためにin vitroモデルで使用されています26,27。ヒト肝芽腫細胞株HepG2は、in vitroでのNAFLDモデルの構築によく使用されますが、腫瘍細胞株として、HepG2細胞の代謝は、通常の生理学的条件下での肝細胞の代謝とは大きく異なります28。したがって、初代肝細胞またはマウス初代肝細胞を使用して薬物スクリーニングのためのin vitro NAFLDモデルを構築することは、腫瘍細胞株を使用するよりも有利である。動物モデルとin vitro肝細胞モデルの両方での薬物効果と治療標的の相乗的検討を比較すると、マウス肝細胞を使用してin vitro NAFLDモデルを構築する方が、より良い応用の可能性を秘めているようです。

肝臓に入る遊離脂肪酸は酸化されてエネルギーを生成するか、トリグリセリドとして貯蔵されます。重要なことに、遊離脂肪酸は特定の脂肪毒性を有し、細胞機能障害およびアポトーシスを誘発し得る12。パルミチン酸(PA)は、ヒト血漿中に最も豊富に存在する飽和脂肪酸である29。非脂肪組織の細胞が高濃度のPAに長時間さらされると、これは活性酸素種(ROS)の産生を刺激し、酸化ストレス、脂質蓄積、さらにはアポトーシスを引き起こします30。したがって、多くの研究者は、肝細胞を刺激してROSを産生するための誘導因子としてPAを使用し、したがって、in vitro脂肪肝疾患モデルを構築し、細胞に対する特定の活性物質の保護効果を評価します31、323334この研究では、PAによって誘導されるNAFLDの細胞モデルに対するPDの保護効果を調査するためのプロトコルを紹介します。

プロトコル

AML-12細胞(正常マウス肝細胞株)は、細胞ベースの研究に使用されます。セルは市販の供給源から入手されます( 材料表を参照)。

1. AML-12細胞をin vitroでNAFLDをモデル化するための前処理

  1. 正常な細胞培養培地(DMEMとハムのF12 [1:1]0.005 mg/mLインスリン、5 ng/mLセレン、0.005 mg/mLトランスフェリン、40 ng/mLデキサメタゾン、および10%ウシ胎児血清[FBS]を含む、材料の を参照)で細胞を5%CO2の加湿雰囲気下で37°Cに維持します。
  2. 細胞を2.8 x 105 細胞/ウェルの密度の12ウェルプレート(1 mL/ウェル)に播種します。
    注:すべての細胞消化および培地交換操作は、細胞の汚染を避けるためにバイオセーフティキャビネット内で実行されます。
  3. 一晩インキュベーション(~10時間)した後に細胞の培養液を取り出し、1 mLの無血清培地(ウェルあたり)で細胞を2回洗浄します。
  4. 12ウェル細胞プレートを、(1)対照群、(2)PD治療群、(3)PA処理群、および(4)PA+PD治療群を含む4つの異なる処理群に左から右に分けます。
    注:各実験的治療群の3つの反復は、同じ12ウェル細胞プレート上に上から下に配置されます。
  5. コントロール群とPD処理群に正常細胞培養培地(1 mL/ウェル)を加え、PA処理群とPA+PD処理群に300 μMのPAを添加した正常細胞培養培地(1 mL/ウェル)を加えます。
  6. 24時間のインキュベーション後に細胞の培養液を取り出し、次いで1 mLの無血清培地(1ウェルあたり)で細胞を2回洗浄します。
  7. ビヒクル(ジメチルスルホキシド、DMSO、0.1% v/v)を添加した正常細胞培養培地(1 mL/ウェル)を対照群に加えます。PD処理群に1 μM PDを添加した正常細胞培養培地(1 mL/ウェル)を追加します。300 μM PAを添加した正常細胞培養培地(1 mL/ウェル)をPA処理群に加えます。300 μM PAおよび1 μM PDを添加した正常細胞培養培地(1 mL/ウェル)をPA + PD処理群に加えます。
  8. さらに24時間インキュベートした後、2′,7′-ジクロロ-ジヒドロ-フルオレセインジアセテート(DCFH-DA)染色(ステップ2)、JC-1染色(ステップ3)、およびウェスタンブロッティング(ステップ4)を使用して、細胞に対するPDの保護効果を調べます。
    注:すべてのインキュベーション操作は、5%CO2を含む加湿雰囲気中で37°Cで行われます。

2. ROS産生の変化の測定

注:細胞内の細胞内ROSレベルは、DCFH-DA染色アッセイに基づいて評価されます。

  1. 処理期間の終了時(ステップ1.8)に、細胞をウェルあたり1 mLのリン酸緩衝生理食塩水(1x PBS、pH 7.4)で3回洗浄し、次にウェルあたり100 μLの10 μM DCFH-DAで細胞を染色します( 材料の表を参照)。細胞を暗所で30分間インキュベートします。
    注:30分のインキュベーション後に明らかな緑色の蛍光が観察されない場合は、プローブと細胞のインキュベーション時間を適切に増やすことができます(30〜60分)。インキュベーションの30分後に緑色蛍光値の過剰露光が観察される場合、プローブおよび細胞のインキュベーション時間は適切に短縮することができる(15〜30分)。
  2. 細胞を1x PBS(1 mL /ウェル)で3回洗浄します。1 mLの1x PBSを各ウェルに加えます。
  3. 12ウェルプレートを顕微鏡ステージに置き( 材料表を参照)、20倍の対物レンズを使用して細胞の形態を観察します(倍率:200倍)。
  4. 励起波長480 nm、発光波長530 nmの緑色蛍光チャネルを用いて、各ウェルの代表的な蛍光画像3枚(倍率:200倍)を蛍光顕微鏡で撮影しました。
    注:DCFH-DAの検出には、励起波長480nm、発光波長530nmの緑色蛍光チャネルをお勧めします。さらに、DCFH−DAは、蛍光顕微鏡3536におけるGFPおよびFITCのパラメータ設定を用いて検出することができる。
  5. 最後に、画像取得ソフトウェア( 材料表を参照)で画像を処理し、ImageJソフトウェアを使用して、各グループの平均蛍光強度または異なるグループの比率を計算します。
    注:イメージング作業に使用される蛍光顕微鏡およびImage Jソフトウェアの技術的詳細は、以前に説明されています37,38

3. ミトコンドリア膜電位変化の測定

注:ミトコンドリア膜電位の変化は、JC-1染色アッセイによって監視されます。

  1. 処理期間の終了時(ステップ1.8)に、1ウェルあたり1 mLの1x PBSで細胞を3回洗浄し、次に100 μLの5 μg/mL JC-1作業溶液( 材料の表を参照)で37°Cの暗所で30分間細胞を染色します。
    注:30分のインキュベーション後に明らかな緑色の蛍光が観察されない場合は、プローブと細胞のインキュベーション時間を適切に増やすことができます(30〜60分)。インキュベーションの30分後に緑色蛍光値の過剰露光が観察される場合、プローブおよび細胞のインキュベーション時間は適切に短縮することができる(15〜30分)。
  2. 細胞を1x PBS(1 mL /ウェル)で3回洗浄します。1 mLの1x PBSを各ウェルに加えます。
  3. 12ウェルプレートを顕微鏡ステージに置き、20倍の対物レンズを使用して細胞の形態を観察します(倍率:200倍)。
  4. 励起波長が485 nm、発光波長が535 nmの緑色蛍光チャネルと、励起波長が550 nmと発光波長が600 nmの赤色蛍光チャネルを用いて、各ウェルの代表的な蛍光画像3枚(倍率200倍)を蛍光顕微鏡で撮影しました。
    注:励起波長485nm、発光波長535nmの緑色蛍光チャネルを使用して、脱分極ミトコンドリア39,40,41として扱われるJC-1モノマーを検出し、励起波長550nmおよび発光波長600nmの赤色蛍光チャネルを使用してJC-1二量体を検出し、 これは分極ミトコンドリア39,40,41として扱われます。
  5. 最後に、画像取得ソフトウェアで画像を処理し、Image Jソフトウェアを使用して、各グループの平均蛍光強度または異なるグループの比率を計算します。
    注:イメージング作業に使用される蛍光顕微鏡およびImage Jソフトウェアの技術的詳細は、以前に説明されています37,38

4. LC3-II/LC3-Iおよびp62/SQSTM1のタンパク質発現量の測定

  1. 処理後(ステップ1.8)、4°Cで予冷した1x PBS(1 mL/ウェル)で細胞を3回洗浄します。
  2. プロテアーゼとホスファターゼ阻害剤カクテル(1x)を添加したRIPA溶解バッファー(100 μL/ウェル)( 材料の表を参照)を12ウェルプレートに加え、氷上で5分間溶解します。
  3. 細胞ライセートを1.5 mLのマイクロ遠心チューブに回収し、12,000 x g で4°Cで20分間遠心分離します。 標準手順42に従ったBCA法により上清のタンパク質濃度を求める。
  4. SDS-PAGEサンプルローディングバッファー(5x、 材料表を参照)を細胞ライセート上清(体積比= 1:4)に加えます。
  5. ボルテックス(高速で~15秒間)で混合し、混合サンプルを100°Cで5分間加熱してタンパク質を変性させます。
  6. 12ウェル調製した12%SDS-PAGEゲルを電気泳動槽に入れ、超純水で希釈したSDSアップサンプルバッファー(1x)を高さ限界位置まで加えます。
    注意: SDS-PAGEゲルは、製造元の指示に従って、市販のキット( 材料表を参照)を使用して調製されます。
  7. タンパク質マーカー(5 μL/ウェル)とサンプル(20 μg/ウェル)をSDS-PAGEゲルの異なるウェルに追加します。
  8. 安定電圧モードを100Vに設定し、80分間電気泳動を行います。
  9. SDS-PAGE電気泳動後、以前に発表された報告43,44に従って、ポリフッ化ビニリデン(PVDF)膜(0.45 μM、材料表を参照)へのタンパク質の電気転写を実行します。
  10. タンパク質の電気転写後、室温のシェーカーで10 mLのTBST(1x TBS、0.1%トゥイーン20)でPVDFメンブレンを2回(5分/回)洗浄します。
  11. PVDFメンブレンを5 mLのウシ血清アルブミン(BSA、5%)で室温で1時間振とう機でブロックします。
  12. PVDFメンブレンを10 mLのTBSTで3回(10分/回)洗浄します。次に、LC3(マウスmAb、1:2,000)、p62/SQSTM1(以下、p62、マウスmAb、1:2,000)、およびβアクチン(マウスmAb、1:2,000)( 材料の表を参照)のブロッキングバッファーで希釈した5 mLの特異的一次抗体中でPVDFメンブレンを4°Cで一晩インキュベートします。
  13. PVDFメンブレンを10 mLのTBSTで室温で3回(10分/時間)洗浄します。次に、ブロッキングバッファー(1:10,000)で希釈したウサギ抗マウスIgG(HRP)二次抗体( 材料の表を参照)とともにPVDFメンブレンを室温でインキュベートし、光から2時間保護します。
  14. PVDFメンブレンを10 mLのTBSTで室温で3回(10分/時間)洗浄します。次に、PVDFメンブレンをラップの上に置き、適量のECL作業溶液(200 μL/メンブレン)を加え( 材料の表を参照)、2分間インキュベートします。
  15. インキュベーション後、ECL作業溶液を取り出し、画像現像のためにイメージングシステムでPVDFメンブレンを露光します。最後に、Image Jソフトウェアを使用して、各バンドのグレー値を解析します。
    注:イメージング作業に使用されるウェスタンブロッティングおよびImage Jソフトウェアの技術的な詳細は、以前に説明されています45,46

5.統計分析

  1. 実験からのデータを平均±標準偏差(SD)として提示します。
  2. 前述の統計ソフトウェアツールを使用して有意性の分析を実行します47
  3. t検定を使用して、2つのグループ間の統計的差を計算します。0.05未満のP値は統計的に有意であると見なされます:*P < 0.05、**P < 0.01、***P < 0.005。

結果

細胞内の細胞内ROS
AML-12細胞を300 μM PAで24時間誘導し、NAFLD細胞モデルを確立しました。続いて、細胞をPDで24時間処理した。細胞をDCFH-DA蛍光プローブで標識し、ROS産生を蛍光顕微鏡下で観察した。細胞内の細胞内ROSのDCFH-DA染色の結果を 図1に示す。結果は、PDが300μMのPA(P < 0.01)でインキュベートされた細胞の細胞内ROSのレベルを大幅に低下させるこ?...

ディスカッション

研究は、NAFLDが脂肪肝からNASHに至るまでの臨床病理学的症候群であり、肝硬変および肝臓癌に進行する可能性があるという事実を強調しています51。高脂肪食と非アクティブなライフスタイルは、NAFLDの典型的な危険因子です。NAFLD治療のための非薬物療法と薬物療法の両方が研究されています51,52,53。し?...

開示事項

著者は利益相反を宣言しません。

謝辞

この研究は、重慶科学技術委員会(cstc2020jxjl-jbky10002、jbky20200026、cstc2021jscx-dxwtBX0013、およびjbky20210029)および中国ポスドク科学基金会(No.2021MD703919)からの助成金によってサポートされています。

資料

NameCompanyCatalog NumberComments
5% BSA Blocking BufferSolarbio, Beijing, ChinaSW3015
AML12 (alpha mouse liver 12) cell lineProcell Life Science&Technology Co., Ltd, ChinaAML12
Beyo ECL PlusBeyotime, Shanghai, ChinaP0018S
Bio-safety cabinetEsco Micro Pte Ltd, SingaporeAC2-5S1 A2 
cellSensOlympus, Tokyo, Japan1.8
Culture CO2 IncubatorEsco Micro Pte Ltd, SingaporeCCL-170B-8
DexamethasoneBeyotime, Shanghai, ChinaST125
Dimethyl sulfoxideSolarbio, Beijing, ChinaD8371
DMEM/F12Hyclone, Logan, UT, USASH30023.01
Foetal Bovine SerumHyclone, Tauranga, New ZealandSH30406.05
Graphpad softwareGraphPad Software Inc., San Diego, CA, USA8.0
HRP Goat Anti-Mouse IgG (H+L)ABclonal, Wuhan, ChinaAS003
Hydrophobic PVDF Transfer MembraneMerck, Darmstadt, GermanyIPFL00010
Insulin, Transferrin, Selenium Solution, 100×Beyotime, Shanghai, ChinaC0341
MAP LC3β AntibodySanta Cruz Biotechnology (Shanghai) Co., LtdSC-376404
Mitochondrial Membrane Potential Assay Kit with JC-1Solarbio, Beijing, ChinaM8650
Olympus Inverted Microscope IX53Olympus, Tokyo, JapanIX53
Palmitic AcidSigma, GermanyP0500
Penicillin-Streptomycin Solution (100x)Hyclone, Logan, UT, USASV30010
Phenylmethanesulfonyl fluorideBeyotime, Shanghai, ChinaST506
Phosphate Buffered SolutionHyclone, Logan, UT, USABL302A
Platycodin DChengdu Must Bio-Technology Co., Ltd, ChinaCSA: 58479-68-8
Protease inhibitor cocktail for general use, 100xBeyotime, Shanghai, ChinaP1005
Protein MarkerSolarbio, Beijing, ChinaPR1910
Reactive Oxygen Species Assay KitSolarbio, Beijing, ChinaCA1410
RIPA Lysis BufferBeyotime, Shanghai, ChinaP0013E
SDS-PAGE Gel Quick Preparation KitBeyotime, Shanghai, ChinaP0012AC
SDS-PAGE Sample Loading Buffer, 5xBeyotime, Shanghai, ChinaP0015
Sigma CentrifugeSigma, Germany3K15
SQSTM1/p62 AntibodySanta Cruz Biotechnology (Shanghai) Co., LtdSC-28359
Tecan Infinite 200 PRO  Tecan Austria GmbH, Austria1510002987
WB Transfer Buffer,10xSolarbio, Beijing, ChinaD1060
β-Actin Mouse mAbABclonal, Wuhan, ChinaAC004

参考文献

  1. Xunyan, X. Y., Fang, X. M. The effect of Platycodon grandiflorum and its historical change in the clinical application of Platycodonis radix. Zhonghua Yi Shi Za Shi. 51 (3), 167-176 (2021).
  2. Ma, X., et al. Platycodon grandiflorum extract: Chemical composition and whitening, antioxidant, and anti-inflammatory effects. RSC Advances. 11 (18), 10814-10826 (2021).
  3. Ke, W., et al. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease. Nutrients. 12 (2), 480 (2020).
  4. Kim, Y. J., et al. Platycodon grandiflorus root extract attenuates body fat mass, hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue. Nutrients. 8 (9), 532 (2016).
  5. Park, H. M., et al. Mass spectrometry-based metabolomic and lipidomic analyses of the effects of dietary Platycodon grandiflorum on liver and serum of obese mice under a high-fat diet. Nutrients. 9 (1), 71 (2017).
  6. Qi, C., et al. Platycodon grandiflorus polysaccharide with anti-apoptosis, anti-oxidant and anti-inflammatory activity against LPS/D-GalN induced acute liver injury in mice. Journal of Polymers and the Environment. 29 (12), 4088-4097 (2021).
  7. Choi, J. H., et al. Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis. Biomedicine & Pharmacotherapy. 86, 205-212 (2017).
  8. Choi, Y. J., et al. Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells. Scientific Reports. 10, 19834 (2020).
  9. Li, T., et al. Platycodin D triggers autophagy through activation of extracellular signal-regulated kinase in hepatocellular carcinoma HepG2 cells. European Journal of Pharmacology. 749, 81-88 (2015).
  10. Lu, J. -. J., et al. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines. 13 (9), 673-679 (2015).
  11. Neuschwander-Tetri, B. A. Therapeutic landscape for NAFLD in 2020. Gastroenterology. 158 (7), 1984-1998 (2020).
  12. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine. 24 (7), 908-922 (2018).
  13. Bessone, F., Razori, M. V., Roma, M. G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cellular and Molecular Life Sciences. 76 (1), 99-128 (2019).
  14. Buzzetti, E., Pinzani, M., Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65 (8), 1038-1048 (2016).
  15. Watt, M. J., Miotto, P. M., De Nardo, W., Montgomery, M. K. The liver as an endocrine organ-Linking NAFLD and insulin resistance. Endocrine Reviews. 40 (5), 1367-1393 (2019).
  16. Khan, R. S., Bril, F., Cusi, K., Newsome, P. N. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 70 (2), 711-724 (2019).
  17. Karkucinska-Wieckowska, A., et al. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation. 52 (3), 13622 (2022).
  18. Tilg, H., Adolph, T. E., Dudek, M., Knolle, P. Non-alcoholic fatty liver disease: The interplay between metabolism, microbes and immunity. Nature Metabolism. 3 (12), 1596-1607 (2021).
  19. Qian, H., et al. Autophagy in liver diseases: A review. Molecular Aspects of Medicine. 82, 100973 (2021).
  20. Du, J., Ji, Y., Qiao, L., Liu, Y., Lin, J. Cellular endo-lysosomal dysfunction in the pathogenesis of non-alcoholic fatty liver disease. Liver International. 40 (2), 271-280 (2020).
  21. Allaire, M., Rautou, P. E., Codogno, P., Lotersztajn, S. Autophagy in liver diseases: Time for translation. Journal of Hepatology. 70 (5), 985-998 (2019).
  22. Kanuri, G., Bergheim, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). International Journal of Molecular Sciences. 14 (6), 11963-11980 (2013).
  23. Lau, J. K., Zhang, X., Yu, J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. The Journal of Pathology. 241 (1), 36-44 (2017).
  24. Reimer, K. C., Wree, A., Roderburg, C., Tacke, F. New drugs for NAFLD: Lessons from basic models to the clinic. Hepatology International. 14 (1), 8-23 (2020).
  25. Carpino, G., et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 72 (2), 470-485 (2020).
  26. Vergani, L. Fatty acids and effects on in vitro and in vivo models of liver steatosis. Current Medicinal Chemistry. 26 (19), 3439-3456 (2019).
  27. Scorletti, E., Carr, R. M. A new perspective on NAFLD: Focusing on lipid droplets. Journal of Hepatology. 76 (4), 934-945 (2022).
  28. Green, C. J., Pramfalk, C., Morten, K. J., Hodson, L. From whole body to cellular models of hepatic triglyceride metabolism: Man has got to know his limitations. American Journal of Physiology-Endocrinology and Metabolism. 308 (1), 1-20 (2015).
  29. Gambino, R., et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. International Journal of Molecular Sciences. 17 (4), 479 (2016).
  30. Marra, F., Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. Journal of Hepatology. 68 (2), 280-295 (2018).
  31. Zhang, J., Zhang, H., Deng, X., Zhang, Y., Xu, K. Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chemico-Biological Interactions. 278, 189-196 (2017).
  32. Liang, Y., et al. γ-Linolenic acid prevents lipid metabolism disorder in palmitic acid-treated alpha mouse liver-12 cells by balancing autophagy and apoptosis via the LKB1-AMPK-mTOR pathway. Journal of Agricultural and Food Chemistry. 69 (29), 8257-8267 (2021).
  33. Peng, Z., et al. Nobiletin alleviates palmitic acid-induced NLRP3 inflammasome activation in a sirtuin 1dependent manner in AML12 cells. Molecular Medicine Reports. 18 (6), 5815-5822 (2018).
  34. Xu, T., et al. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. Nutrition & Metabolism. 18 (1), 13 (2021).
  35. Aranda, A., et al. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicology in Vitro. 27 (2), 954-963 (2013).
  36. Eruslanov, E., Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods in Molecular Biology. 594, 57-72 (2010).
  37. Bankhead, P. . Analyzing Fluorescence Microscopy Images with ImageJ. , (2014).
  38. Wiesmann, V., et al. Review of free software tools for image analysis of fluorescence cell micrographs. Journal of Microscopy. 257 (1), 39-53 (2015).
  39. Lugli, E., Troiano, L., Cossarizza, A. Polychromatic analysis of mitochondrial membrane potential using JC-1. Current Protocols in Cytometry. , (2007).
  40. Sivandzade, F., Bhalerao, A., Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio-protocol. 9 (1), 3128 (2019).
  41. Chazotte, B. Labeling mitochondria with JC-1. Cold Spring Harbor Protocols. 2011 (9), (2011).
  42. Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. The Protein Protocols Handbook. , 11-15 (2009).
  43. Goldman, A., Ursitti, J. A., Mozdzanowski, J., Speicher, D. W. Electroblotting from polyacrylamide gels. Current Protocols in Protein Science. 82, 1-16 (2015).
  44. Mozdzanowski, J., Speicher, D. W. Proteins from polyacrylamide gels onto PVDF membranes. Current Research in Protein Chemistry. , 87 (2012).
  45. Taylor, S. C., Posch, A. The design of a quantitative western blot experiment. Biomed Research International. 2014, 361590 (2014).
  46. Motulsky, H. J. Graphpad Statistics Guide. Options for multiple t tests. Graphpad. , (2020).
  47. Poltorak, A. Cell death: All roads lead to mitochondria. Current Biology. 32 (16), 891-894 (2022).
  48. Dadsena, S., Jenner, A., García-Sáez, A. J. Mitochondrial outer membrane permeabilization at the single molecule level. Cellular and Molecular Life Sciences. 78 (8), 3777-3790 (2021).
  49. Green, D. R., Kroemer, G. The pathophysiology of mitochondrial cell death. Science. 305 (5684), 626-629 (2004).
  50. Lange, N. F., Radu, P., Dufour, J. F. Prevention of NAFLD-associated HCC: Role of lifestyle and chemoprevention. Journal of Hepatology. 75 (5), 1217-1227 (2021).
  51. Liu, X., Zhang, Y., Ma, C., Lin, J., Du, J. Alternate-day fasting alleviates high fat diet induced non-alcoholic fatty liver disease through controlling PPARalpha/Fgf21 signaling. Molecular Biology Reports. 49 (4), 3113-3122 (2022).
  52. Romero-Gomez, M., Zelber-Sagi, S., Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. Journal of Hepatology. 67 (4), 829-846 (2017).
  53. Mizushima, N., Levine, B. Autophagy in human diseases. New England Journal of Medicine. 383 (16), 1564-1576 (2020).
  54. Cui, B., Yu, J. M. Autophagy: A new pathway for traditional Chinese medicine. Journal of Asian Natural Products Research. 20 (1), 14-26 (2018).
  55. Law, B. Y., et al. New potential pharmacological functions of Chinese herbal medicines via regulation of autophagy. Molecules. 21 (3), 359 (2016).
  56. Zhou, H., et al. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. European Journal of Pharmacology. 898, 173976 (2021).
  57. Zhang, L., Yao, Z., Ji, G. Herbal extracts and natural products in alleviating non-alcoholic fatty liver disease via activating autophagy. Frontiers in Pharmacology. 9, 1459 (2018).
  58. Zhang, X., et al. C-X-C motif chemokine 10 impairs autophagy and autolysosome formation in non-alcoholic steatohepatitis. Theranostics. 7 (11), 2822-2836 (2017).
  59. Li, C. X., et al. Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-kappaB signaling pathways. World Journal of Gastroenterology. 25 (34), 5120-5133 (2019).
  60. Li, S., et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology. 66 (3), 936-952 (2017).
  61. Farrell, G. C., Teoh, N. C., McCuskey, R. S. Hepatic microcirculation in fatty liver disease. The Anatomical Record. 291 (6), 684-692 (2008).
  62. Milner, E., et al. Emerging three-dimensional hepatic models in relation to traditional two-dimensional in vitro assays for evaluating drug metabolism and hepatoxicity. Medicine in Drug Discovery. 8, 100060 (2020).
  63. Zhang, X., Jiang, T., Chen, D., Wang, Q., Zhang, L. W. Three-dimensional liver models: State of the art and their application for hepatotoxicity evaluation. Critical Reviews in Toxicology. 50 (4), 279-309 (2020).
  64. Bilson, J., Sethi, J. K., Byrne, C. D. Non-alcoholic fatty liver disease: A multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proceedings of the Nutrition Society. 81 (2), 146-161 (2022).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

JoVE 190 D

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved