このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
This protocol describes the procedure for genome editing in mouse bone marrow-derived macrophages using Cas9-sgRNA ribonucleoprotein complexes assembled in vitro and delivered by electroporation.
Bone marrow-derived macrophages (BMDMs) from mice are a key tool for studying the complex biology of tissue macrophages. As primary cells, they model the physiology of macrophages in vivo more closely than immortalized macrophage cell lines and can be derived from mice already carrying defined genetic changes. However, disrupting gene function in BMDMs remains technically challenging. Here, we provide a protocol for efficient CRISPR/Cas9 genome editing in BMDMs, which allows for the introduction of small insertions and deletions (indels) that result in frameshift mutations that disrupt gene function. The protocol describes how to synthesize single-guide RNAs (sgRNA-Cas9) and form purified sgRNA-Cas9 ribonucleoprotein complexes (RNPs) that can be delivered by electroporation. It also provides an efficient method for monitoring editing efficiency using routine Sanger sequencing and a freely available online analysis program. The protocol can be performed within 1 week and does not require plasmid construction; it typically results in 85% to 95% editing efficiency.
Macrophages are innate immune cells that play critical roles in tissue repair and immunity1,2. Immortalized macrophage cell lines, such as mouse RAW 264.7 cells or human THP-1 cells, have several beneficial characteristics, including robust growth and ease of gene disruption by delivering vectors for RNA interference or CRISPR/Cas93,4. However, oncogenic transformation dramatically alters their physiology, which results in the aberrant activation of some pathways and muted responses of others5,6
1. sgRNA design
NOTE: This step describes selection of the target sequences and design of the sgRNAs. It is helpful to design guides that are in the first large coding exon, so that any translated protein is disrupted early in the open reading frame. It is also helpful to select target sequences that lie within the same exon, as this will streamline the analysis of the editing efficiency (step 6). The examples of genome editing provided with this protocol used sgRNAs targeting t.......
The IVT template is a 127 bp PCR product (Figure 1B). The full-length IVT product is a 98 nt RNA, which migrates similarly to a 70 bp double-stranded DNA fragment (Figure 1C).
After electroporation, the cells should be >90% viable, with a total cell count of >70% of the starting cell number. The resulting pool of mutant cells should have a diverse set of indels, starting near the Cas9 cleavage site. The analysis of the targete.......
Genome editing using electroporated Cas9-sgRNA complexes allows effective disruption of gene function in BMDMs. The editing efficiency varies by the target sequence and gene. Typically, four to five sgRNAs are generally screened to identify one that is highly active. Some loci have lower editing efficiencies, most likely due the chromatin structure. In these cases, several modifications can be made to increase the editing efficiency. Co-delivery of two active sgRNAs to the same exon results in improved editing for some g.......
This work was funded by the NIH grant 5R01AI144149. The schematic figures were created with BioRender.
....Name | Company | Catalog Number | Comments |
3T3-MCSF Cell Line | Gift from Russell Vance | not applicable | |
Alt-R Cas9 Electroporation Enhancer | IDT | 1075915 | |
Ampure XP Reagent Beads | Beckman Coulter | A63880 | |
Calf intestinal alkaline phosphatase | NEB | M0525S | |
DNase | NEB | M0303S | |
DPBS +Ca/Mg (0.9mM CaCl2 and 0.5mM MgCl2) | Thermo Fisher | 14040-133 | |
DPBS -Ca/Mg | Thermo Fisher | 14190-144 | |
ExoI | NEB | M0293S | |
Fetal Calf Serum (FCS) | Corning | 35-015-CV | |
Herculase DNA polymerase & buffer | Agilent | 600677 | |
HiScribe T7 High Yield RNA Synthesis Kit | NEB | E2040S | |
LoBind conical tubes 15 mL | Eppendorf | 30122216 | |
LoBind Eppendorf tubes 2 mL | Eppendorf | 22431102 | |
NEBuffer r2.1 | NEB | B6002S | |
Neon Transfection System | Thermo Fisher | MPK5000, MPP100, MPS100 | |
Neon Transfection System 10 uL Tips | Thermo Fisher | MPK1025 or MPK1096 | |
PBS + 1mM EDTA | Lonza | BE02017F | |
Proteinase K | Thermo Fisher | EO0491 | |
rCutSmart Buffer for ExoI | NEB | B6004S | |
Ribolock | Thermo Fisher | EO0384 | |
RNA loading dye | NEB | B0363S | |
RNeasy Mini Kit | Qiagen | 74104 | |
S. pyogenes Cas9-NLS | University of California Macro Lab | not applicable | Available to non-UC investigators through https://qb3.berkeley.edu |
S. pyogenes Cas9-NLS, modified 3rd Generation | IDT | 1081059 | |
SAP | NEB | M0371S |
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved