サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A surgical procedure is described to perform injections into the lumbar cistern of the juvenile rat. This approach has been used for the intrathecal delivery of gene therapy vectors, but it is anticipated that this approach can be used for a variety of therapeutics, including cells and drugs.

Abstract

Gene therapy is a powerful technology to deliver new genes to a patient for the treatment of disease, be it to introduce a functional gene, inactivate a toxic gene, or provide a gene whose product can modulate the biology of the disease. The delivery method for the therapeutic vector can take many forms, ranging from intravenous infusion for systemic delivery to direct injection into the target tissue. For neurodegenerative disorders, it is often desirable to skew transduction towards the brain and/or spinal cord. The least invasive approach to target the entire central nervous system involves injection into the cerebrospinal fluid (CSF), allowing the therapeutic to reach a large fraction of the central nervous system. The safest approach to deliver a vector into the CSF is the lumbar intrathecal injection, where a needle is introduced into the lumbar cistern of the spinal cord. This technique, also known as a lumbar puncture, has been widely used in neonatal and adult rodents and in large animal models. While the technique is similar across species and developmental stages, subtle differences in size, structure, and elasticity of tissues surrounding the intrathecal space require accommodations in the approach. This article describes a method for performing lumbar puncture in juvenile rats to deliver an adeno-associated serotype 9 vector. Here, 25-35 µL of vector were injected into the lumbar cistern, and a green fluorescent protein (GFP) reporter was used to evaluate the transduction profile resulting from each injection. The benefits and challenges of this approach are discussed.

Introduction

The promise of viral-mediated gene therapies has finally been realized in recent years with the FDA approval of treatments for spinal muscular atrophy, retinal dystrophy, factor IX hemophilia, cancer, and more1,2,3,4. Countless other therapeutics are currently in development. Gene therapy aims to deliver a therapeutic gene to a patient's cells. The products of this new gene can replace the missing activity from a deficient endogenous gene, inhibit a toxic gene, kill cancerous cells, or provide some other beneficial function.

Protocol

This study was approved by the Emory University Institutional Animal Care and Use Committee (IACUC). Sprague-Dawley rats (28-30 days of age, mass in the range of about 90-135 g, males and females) were used in the present study.

1. Preparation of the vector

  1. Thaw the AAV9 vector (see Table of Materials) on ice at the beginning of the procedure.
  2. Centrifuge the microcentrifuge tube containing the vector briefly in a table-top centrifuge to e.......

Representative Results

To determine the accuracy of the injection technique, a dye, trypan blue, was used as a surrogate for the therapeutic. This dye readily binds to proteins, so it generally stays within the structure into which it was injected. This means the dye may not accurately predict the post-injection distribution of the therapeutic; it is simply used to reveal the accuracy of the injection. When successfully introduced into the lumbar cistern, trypan blue binds to the dura mater, staining the perimeter of the spinal cord blue. Howe.......

Discussion

A wide variety of diseases affect the CNS. Providing a functional copy of the relevant gene via a viral vector is an attractive treatment strategy for those that are recessive and monogenic in nature, such as spinal muscular atrophy. However, the blood-brain barrier (BBB) excludes most gene therapy vectors given intravenously11. Those that can cross the BBB, such as AAV9, must be given in high doses to overcome the vector loss due to peripheral transduction12. The age is al.......

Acknowledgements

The authors would like to thank Steven Gray, Matthew Rioux, Nanda Regmi, and Lacey Stearman of UT Southwestern for a productive discussion of the challenge posed by juvenile rats for intrathecal injection. This work was partly supported by funding from Jaguar Gene Therapy (to JLFK).

....

Materials

NameCompanyCatalog NumberComments
200 µL filtered pipette tipsMidSciPR-200RK-FLPipetting virus
AAV9-GFPVector BuilderP200624-1005ynrAAV9 vector expressing GFP
Absorbable Suture with Needle Coated Vicryl Polyglactin 910 FS-2 3/8 Circle Reverse Cutting Needle Size 4 - 0 BraidedMcKessonJ422HSuture
Bench padVWR56616-031Surgery
Braintree Scientific Isothermal Pads, 8'' x 8''Fisher Scientific50-195-4664Maintains body temperature
BuprenorphineMcKesson1013922Analgesic
Buprenorphine-ER (1 mg/mL)ZoopharmaExtended-release analgesic
Cotton swabsFisher Scientific19-365-409Blood removal
Drape, Mouse, Clear Plastic, 12" x 12", with Adhesive FenestrationSteris1212CPSTFSurgical drape
Dumont #5 ForcepsFine Science Tools11251-20Forceps
Electric BlanketCVS HealthCVS Health Series 500 Extra Long Heating Pad
Eppendorf Research plus, 1-channel pipette, variable, 20–200 µLEppendorf3123000055Pipetting virus
Fine ScissorsFine Science Tools14059-11Curved surgical scissors
Friedman-Pearson RongeursFine Science Tools16121-14Laminectomy
Halsey Needle HoldersFine Science Tools12001-13Needle driver
Insulin Syringes with Ultra-Fine Needle 12.7 mm x 30 G 3/10 mL/ccBD328431Syringe
IsofluraneMcKesson803250Anesthetic
Isopropanol wipesFisher Scientific22-031-350Skin disinfection
Lidocaine, 1%McKesson239935Local anesthesia
Microcentrifuge Tubes: 1.5mLFisher Scientific05-408-137Loading the syringe
Povidone-iodineFisher Scientific50-118-0481Skin disinfection
Scalpel Handle - #4Fine Science Tools10004-13Scalpel blade holder
Sure-Seal Induction ChamberBraintree ScientificEZ-17Anesthesia box
Surgical Blade Miltex Carbon Steel No. 11 Sterile Disposable Individually WrappedMcKesson4-111#11 Scalpel blade
SYSTANE NIGHTTIME Eye OintmentAlconEye ointment
Trypan BlueVWR97063-702Injection

References

  1. Wurster, C., Petri, S. Progress in spinal muscular atrophy research. Curr Opin Neurol. 35 (5), 693-698 (2022).
  2. Wu, K. Y., et al. Retinitis pigmentosa: Novel therapeutic targets and drug development. Pharm....

Explore More Articles

Gene TherapyIntrathecal Vector DeliveryLumbar Cistern InjectionJuvenile RatsCentral Nervous SystemAdeno associated VirusGreen Fluorescent ProteinTransduction Profile

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved