サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Microhardness is a mechanical property and an informative parameter for evaluating hard tissue pathophysiology. Here, we demonstrate a standardized protocol (sample preparation, polishing, flat surface, and indentation sites) for microhardness analysis in tooth and alveolar bone in rodent oral disease models, namely, dental fluorosis, and ligature-induced periodontal bone resorption.

Abstract

The mechanical property, microhardness, is evaluated in dental enamel, dentin, and bone in oral disease models, including dental fluorosis and periodontitis. Micro-CT (µCT) provides 3D imaging information (volume and mineral density) and scanning electron microscopy (SEM) produces microstructure images (enamel prism and bone lacuna-canalicular). Complementarily to structural analysis by µCT and SEM, microhardness is one of the informative parameters to evaluate how structural changes alter mechanical properties. Despite being a useful parameter, studies on microhardness of alveolar bone in oral diseases are limited. To date, divergent microhardness measurement methods have been reported. Since microhardness values vary depending on the sample preparation (polishing and flat surface) and indentation sites, diverse protocols can cause discrepancies among studies. Standardization of the microhardness protocol is essential for consistent and accurate evaluation in oral disease models. In the present study, we demonstrate a standardized protocol for microhardness analysis in tooth and alveolar bone. Specimens used are as follows: for the dental fluorosis model, incisors were collected from mice treated with/without fluoride-containing water for 6 weeks; for ligature-induced periodontal bone resorption (L-PBR) model, alveolar bones with periodontal bone resorption were collected from mice ligated on the maxillary 2nd molar. At 2 weeks after the ligation, the maxilla was collected. Vickers hardness was analyzed in these specimens according to the standardized protocol. The protocol provides detailed materials and methods for resin embedding, serial polishing, and indentation sites for incisors and alveolar. To the best of our knowledge, this is the first standardized microhardness protocol to evaluate the mechanical properties of tooth and alveolar bone in rodent oral disease models.

Introduction

Hardness is one of the mechanical properties (e.g., elasticity, hardness, viscoelasticity, and fracture behavior) and is commonly used to characterize the ability to resist compression deformation and fracture of a local area of a material. The static indentation hardness test is the most used method, including Vickers hardness and Knoop hardness1. The Vickers hardness test is implemented by pressing a diamond indenter into the surface under a fixed testing load. The indenter is pyramid-shaped, with a square base and an angle of 136° between opposite faces. The length of both diagonals formed on the test surface is measured, and the averag....

Protocol

All procedures described in this protocol have been performed in accordance with guidelines and regulations for the use of vertebrate animals approved by the Institutional Animal Care Use Committee (IACUC) at Augusta University and at Nova Southeastern University which is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC). Note that Dr. Suzuki was employed by Augusta University where the mouse dental fluorosis experiments were completed.

Representative Results

Dental fluorosis model: Figure 1 shows representative μCT images of incisors in control and fluoride-treated mice. In the control (Figure 1B-D), the cervical region showed lower enamel mineral density (EMD) of 1.188 g/cm3 (Figure 1B) compared to the middle (1.924 g/cm3) and tip (1.819 g/cm3; Figure 1C,D). In the fluoride-treated ena.......

Discussion

Microhardness is performed to evaluate mechanical properties of hard tissues like tooth and bone. To date, divergent microhardness measurement methods have been reported. Most of the measurement information, especially sample preparations and the indentation sites are likely to be insufficient. This study focused on the microhardness protocol for enamel and alveolar bone in dental fluorosis and periodontal diseases models. To obtain consistent and accurate results, the critical steps in this protocol are orientation of t.......

Acknowledgements

Research reported in this publication was supported by JSPS KAKENHI JP21K09915 (MO) and the National Institute of General Medical Sciences; T34GM145509 (MM) and the National Institute of Dental and Craniofacial Research; R01DE025255 and R21DE032156 (XH); R01DE029709, R21DE028715 and R15DE027851 (TK); R01DE027648 and K02DE029531 (MS).

....

Materials

NameCompanyCatalog NumberComments
Braided Silk Suture 6-0Teleflex
Canica Small Animal Surgery SystemKent Scientific Corporation SURGI 5001
CarbiMet PSA 120/P120Buehler30080120
CarbiMet PSA 60/P60Buehler36080060
CarbiMet PSA 600/P1200Buehler36080600
Castroviejo Micro Needle hilderF.S.T12060-01
Epofix cold setting embeding ResinElectron Microscopey ScienceCAT-1237
Fisherbrand 112xx Series Advanced Ultrasonic CleanerFisher BrandFB11201
Fluoride-free Rodent dietBio ServF1515 AIN-76A, 1/2" Pellets
in-vivo microCT Skyscan 1176Bruker
Isomet 1000 Precison sawBuehlerMA112180
Lapping film 0.3µmMaruto instrument co, LTD. Japan26-4203Alternative 
A3-0.3 SHT, 3M USA
Lapping film 1µmMaruto instrument co, LTD. Japan26-4206Alternative
A3-1 SHT, 3M USA
Lapping film 12µmMaruto instrument co, LTD. Japan26-4211Alternative
A3-12 SHT, 3M USA
Lapping film 3µmMaruto instrument co, LTD. Japan26-4204Alternative
A3-3 SHT, 3M USA
Lapping film 9µmMaruto instrument co, LTD. Japan26-4201Alternative
A3-9 SHT, 3M USA
Leica wild microscope LeicaLEIC M690
Metaserv 2000 Variable speed Grinder polisherBuehlerNo: 557-MG1-1160
MicroCut PSA 1200/P2500Buehler36081200
MicroCut PSA P4000Buehler36084000
Microhardness tester, ALPHA-MHT-1000Z PACE Technologies
SamplKups  1 inchBuehlerNo: 209178
Sodium FluorideFisher ScientificS299-100
West cott Stitch ScissorJEDMEDCat. #25-1180
ZooMed Repti Thern Undertank heater (U.T.H)Zoo Med Laboratories, Inc.RH-4

References

Explore More Articles

MicrohardnessToothAlveolar BoneOral Disease ModelsMineral Tissue TestingEnamelDentinBonePeriodontal DiseaseOral CancerPFASFluorosisPeriodontitisMicro CTSEMMechanical PropertiesStandardized Protocol

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved