サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol demonstrates the laser cell ablation of individual neurons in intact Drosophila larvae. The method enables the study of the effect of reducing competition between neurons in the developing nervous system.

Abstract

The protocol describes single-neuron ablation with a 2-photon laser system in the central nervous system (CNS) of intact Drosophila melanogaster larvae. Using this non-invasive method, the developing nervous system can be manipulated in a cell-specific manner. Disrupting the development of individual neurons in a network can be used to study how the nervous system can compensate for the loss of synaptic input. Individual neurons were specifically ablated in the giant fiber system of Drosophila, with a focus on two neurons: the presynaptic giant fiber (GF) and the postsynaptic tergotrochanteral motor neuron (TTMn). The GF synapses with the ipsilateral TTMn, which is crucial to the escape response. Ablating one of the GFs in the 3rd instar brain, just after the GF starts axonal growth, permanently removes the cell during the development of the CNS. The remaining GF reacts to the absent neighbor and forms an ectopic synaptic terminal to the contralateral TTMn. This atypical, bilaterally symmetric terminal innervates both TTMns, as demonstrated by dye coupling, and drives both motor neurons, as demonstrated by electrophysiological assays. In summary, the ablation of a single interneuron demonstrates synaptic competition between a bilateral pair of neurons that can compensate for the loss of one neuron and restore normal responses to the escape circuit.

Introduction

Laser ablation is a preferred tool for dissecting neural circuits in a wide variety of organisms. Developed in model genetic systems like worms and flies, it has been applied across the animal kingdom to study the structure, function, and development of the nervous system1,2,3. Here, single-neuron ablation was employed to investigate how neurons interact during circuit assembly in Drosophila. The escape system of the fly is a favorite circuit for analysis because it contains the largest neurons and the largest synapses in the adult fly, and the circuit has been well-....

Protocol

All animals used for the protocol were of the species Drosophila melanogaster. There are no ethical issues surrounding the use of this species. Ethical clearance was not necessary to carry out this work. The details of the Drosophila species, reagents, and equipment used in the study are listed in the Table of Materials.

1. Breeding Drosophila and selecting the correct larval stage

  1. Choose a Gal4 driver line that drives ex.......

Representative Results

This method can be used to manipulate the development of specific neuronal networks in the nervous system of Drosophila. The primary research question here was the formation of synaptic connections. Removing either the presynaptic GF or the postsynaptic TTMn enabled the investigation of reactive synaptogenesis at this central synapse and the molecular mechanisms crucial for synaptic function and development. As described in the protocol, laser cell ablation of one of the GFs or one of the TTMns was performed, an.......

Discussion

Cell ablation with a 2-photon microscope proved to be a highly successful method to manipulate neuronal circuit development in Drosophila. Since this method is non-invasive, it causes minimal damage to the animal. The data support the usefulness of this cell-specific manipulation of known circuits.

Crucial for the success of the ablation was selecting the most appropriate Gal4 driver. Since the GFS is well studied, many specific Gal4 driver lines have been described7.......

Acknowledgements

Experiments on the 2-photon microscope were performed in the FAU Stiles-Nicholson Brain Institute Advanced Cell Imaging Core. We would like to thank the Jupiter Life Science Initiative for financial support.

....

Materials

NameCompanyCatalog NumberComments
Alexa Fluor 488 AffiniPure Goat Anti-Rabbit IgG (H+L)Jaxkson ImmunoResearch111-545-003
Anti-green fluorescent protein, rabbitFisher ScientificA111221:500 concentration
Apo LWD 25x/1.10W ObjectiveNikonMRD77220water immersion long working distance
Bovine Serum Albumin (BSA)SigmaB4287-25G
Chameleon Ti:Sapphire Vision II LaserCoherent
Cotton BallGenesee Scientific51-101
Dextra, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby)Fisher ScientificD1817
Drosophila salinerecipe from Gu and O'Dowd, 2006
Ethyl EtherFisher ScientificE134-1Danger, Flammable liquid
Fly food B (Bloomington recipe)LabExpress7001-NV
Methyl salicylateFisher ScientificO3695-500
Microcentrifuge tube 1.5 mLEppendorf22363204
Microscope cover-slip 18x18 #1.5Fisher Scientific12-541A
Neurobiotin TracerVector LaboratoriesSP-1120
Nikon A1R multi-photon microscopeNikonon an upright FN1 microsope stand
NIS Elements Advanced ResearchNikonAcquisition and data analysis software
Paraformaldehyde (PFA)Fisher ScientificT353-500
PBS (Phosphate Buffered Salin)Fisher BioReagentsBP2944-100Tablets
R91H05-Gal4Bloomington Drosophila Stock Center40594
shakB(lethal)-GAl4Bloomington Drosophila Stock Center51633
Superfrost microscope glass slideFisher Scientific12-550-143
Triton X-100Fisher Scientific422355000detergent solution
UAS-10xGFPBloomington Drosophila Stock Center32185

References

  1. Chung, S. H., Mazur, E. Femtosecond laser ablation of neurons in C. elegans for behavioral studies. Appl Phys A Mater Sci Process. 96 (2), 335-341 (2009).
  2. Bower, D. V., et al. A....

Explore More Articles

Laser Cell AblationDrosophila LarvaeSynaptic Competition2 photon Laser SystemCentral Nervous SystemNeuron AblationGiant Fiber SystemPresynaptic Giant FiberTergotrochanteral Motor NeuronEscape ResponseEctopic Synaptic TerminalDye CouplingElectrophysiological AssaysInterneuron Compensation

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved