Sign In

3.1 : Structure of Alkanes

The formation of carbon-carbon bonds leading to the creation of the carbon chain is the basis of organic chemistry. August Kekulé and Archibald Scott Couper independently developed this idea of carbon chain formation.

Hydrocarbons are the simplest organic compounds composed of carbons and hydrogens. Based on the bond order between carbons, the hydrocarbons are further classified into alkanes, alkenes, and alkynes.

Alkanes are the simplest hydrocarbons with sp3 hybrid carbon atoms. These sp3 carbon atoms can form sigmabonds with sp3 orbitals of other carbon atoms or with the 1s atomic orbitals of hydrogen atoms. Since alkanes possess only single bonds between carbon atoms, they are also known as saturated hydrocarbons. The general formula of alkanes is CnH2n+2,indicating that for every "n" carbon atom, alkanes have "2n+2" hydrogen atoms.

The Lewis structure of alkanes can be simplified using the condensed structural formula. In this representation, bonds between carbon-hydrogen and carbon-carbon are omitted to simplify the structure. Further simplification is done with the help of the line-angle formula. The lines represent carbon-carbon bonds. The line end and vertex represent the carbon atoms. The hydrogens are not explicitly shown and are assumed to be present, satisfying the carbon valency.

Tags
Carbon carbon BondsOrganic ChemistryCarbon Chain FormationHydrocarbonsAlkanesAlkenesAlkynesSp3 Hybrid Carbon AtomsSigma BondsSaturated HydrocarbonsGeneral FormulaCondensed Structural FormulaLine angle FormulaCarbon Valency

From Chapter 3:

article

Now Playing

3.1 : Structure of Alkanes

Alkanes and Cycloalkanes

22.1K Views

article

3.2 : Constitutional Isomers of Alkanes

Alkanes and Cycloalkanes

16.3K Views

article

3.3 : Nomenclature of Alkanes

Alkanes and Cycloalkanes

15.7K Views

article

3.4 : Physical Properties of Alkanes

Alkanes and Cycloalkanes

9.4K Views

article

3.5 : Newman Projections

Alkanes and Cycloalkanes

13.2K Views

article

3.6 : Conformations of Ethane and Propane

Alkanes and Cycloalkanes

11.5K Views

article

3.7 : Conformations of Butane

Alkanes and Cycloalkanes

11.4K Views

article

3.8 : Cycloalkanes

Alkanes and Cycloalkanes

10.4K Views

article

3.9 : Conformations of Cycloalkanes

Alkanes and Cycloalkanes

10.1K Views

article

3.10 : Conformations of Cyclohexane

Alkanes and Cycloalkanes

9.8K Views

article

3.11 : Chair Conformation of Cyclohexane

Alkanes and Cycloalkanes

11.9K Views

article

3.12 : Stability of Substituted Cyclohexanes

Alkanes and Cycloalkanes

10.7K Views

article

3.13 : Disubstituted Cyclohexanes: <em>cis-trans</em> Isomerism

Alkanes and Cycloalkanes

10.1K Views

article

3.14 : Combustion Energy: A Measure of Stability in Alkanes and Cycloalkanes

Alkanes and Cycloalkanes

5.8K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved