JoVE Logo
Faculty Resource Center

Sign In

Abstract

Neuroscience

Heterologous Expression and Functional Analysis of Aedes aegypti Odorant Receptors to Human Odors in Xenopus Oocytes

Published: June 8th, 2021

DOI:

10.3791/61813

1Department of Entomology and Plant Pathology, Auburn University, 2Departments of Biochemistry & Biophysics, and Cellular & Molecular Pharmacology, University of California, San Francisco, 3Department of Biological Sciences, Vanderbilt University
* These authors contributed equally

The mosquito Aedes aegypti (Linnaeus), a vector of many important human diseases including yellow fever, dengue fever and Zika fever, shows a strong preference for human hosts over other warm-blooded animals for blood meals. Olfactory cues play a critical role for mosquitoes as they explore their environment and seek a human host to obtain blood meals, thus transmitting human diseases. Odorant receptors (ORs) expressed in the olfactory sensory neurons are known to be responsible for the interaction of mosquito vectors with human odors. To gain deeper insights into Ae. aegypti’s olfactory physiology and investigate their interactions with humans at the molecular level, we used an optimized protocol of Xenopus Oocytes heterologous expression to functionally analyze Ae. aegypti odorant receptors in response to human odors. Three example experiments are presented: 1) Cloning and synthesizing cRNAs of ORs and odorant receptor co-receptor (Orco) from four to six days old Ae. aegypti antennae; 2) Microinjection and expression of ORs and Orco in Xenopus oocytes; and 3) Whole-cell current recording from Xenopus oocytes expressing mosquito ORs/Orco with a two-electrode voltage-clamp. These optimized procedures provide a new way for researchers to investigate human odor reception in Aedes mosquitoes and reveal the underlying mechanisms governing their host-seeking activity at a molecular level.

Tags

Heterologous Expression

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved