Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biochemistry

Nucleoside Triphosphate Hydrolases Assay in Toxoplasm gondii and Neospora caninum for High-Throughput Screening using a Robot Arm

Published: July 22nd, 2022

DOI:

10.3791/62874

* These authors contributed equally

Abstract

Protozoan parasites infect humans and many warm-blooded animals. Toxoplasma gondii, a major protozoan parasite, is commonly found in HIV-positive patients, organ transplant recipients and pregnant women, resulting in the severe health condition, Toxoplasmosis. Another major protozoan, Neospora caninum, which bears many similarities to Toxoplasma gondii, causes serious diseases in animals, as does Encephalomyelitis and Myositis-Polyradiculitis in dogs and cows, resulting in stillborn calves. All these exhibited similar nucleoside triphosphate hydrolases (NTPase). Neospora caninum has a NcNTPase, while Toxoplasma gondii has a TgNTPase-I. The enzymes are thought to play crucial roles in propagation and survival. In order to establish compounds and/or extracts preventing protozoan infection, we targeted these enzymes for drug discovery. The next step was to establish a novel, highly sensitive, and highly accurate assay by combining a conventional biochemical enzyme assay with a fluorescent assay to determine ADP content. We also validated that the novel assay fulfills the criteria to carry out high-throughput screening (HTS) in the two protozoan enzymes. We performed HTS, identified 19 compounds and six extracts from two synthetic compound libraries and an extract library derived from marine bacteria, respectively. In this study, a detailed explanation has been introduced on how to carry out HTS, including information about the preparation of reagents, devices, robot arm, etc.

Explore More Videos

Nucleoside Triphosphate Hydrolases

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved