JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Medicine

Cerebral Ischemic Coma Model Induced by Modified Four-Vessel Occlusion

Published: July 5th, 2024

DOI:

10.3791/67161

1School of Chemistry and Chemical Engineering, South China University of Technology, 2School of Medicine, Foshan University
* These authors contributed equally

Coma caused by cerebral ischemia is the most serious complication of cerebral ischemia. Four-vessel occlusion can establish a cerebral ischemic coma model for disease research and drug development. However, the commonly used four-vessel occlusion method mainly involves inserting an electrocoagulation pen into the bilateral pterygoid foramen of the first cervical vertebra behind the neck to electrocoagulate the vertebral arteries. This process carries the risk of incomplete electrocoagulation, bleeding, and damage to the brainstem and spinal cord. Twenty-four hours after surgery, re-anesthetized rats undergo carotid artery ligation in front of the neck. Two surgeries expose the rats to a higher risk of infection and increase the experimental period. In this study, during a single surgical procedure, an anterior cervical incision was used to locate the key site where the vertebral artery penetrates the first cervical vertebra. The bilateral vertebral arteries were electrocauterized under visual conditions, while the bilateral common carotid arteries were separated to place loose knots. When the rats showed consciousness of the inversion reaction, the bilateral common carotid arteries were quickly ligated to induce ischemic coma. This method can avoid the risk of infection caused by two surgical operations and is easy to perform with a high success rate, providing a useful reference for relevant practitioners.

Explore More Videos

Vertebral Artery Electrocoagulation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved