Zaloguj się

Despite the protective membrane that separates a cell from the environment, cells need the ability to detect and respond to environmental changes. Additionally, cells often need to communicate with one another. Unicellular and multicellular organisms use a variety of cell signaling mechanisms to communicate to respond to the environment.

Cells respond to many types of information, often through receptor proteins positioned on the membrane. For example, skin cells respond to and transmit touch information, while photoreceptors in the retina can detect light. Most cells, however, have evolved to respond to chemical signals, including hormones, neurotransmitters, and many other types of signaling molecules. Cells can even coordinate different responses elicited by the same signaling molecule.

Typically, cell signaling involves three steps: (1) reception of the signal, (2) signal transduction, and (3) a response. In most signal reception, a membrane-impermeable molecule, or ligand, causes a change in a membrane receptor; however, some signaling molecules, such as hormones, can traverse the membrane to reach their internal receptors. The membrane receptor can then send this signal to intracellular messengers, which transduces the message into a cellular response. This intracellular response may include a change transcription, translation, protein activation, or many others.

Unicellular organisms such as bacteria can use a type of cell signaling called quorum sensing to detect their concentration in a colony and generate coordinated responses. Eukaryotic cells can release ligands that target the same cell that produced the signal (autocrine signaling) or neighboring cells (paracrine signaling). Signals can even be sent over long distances, as in the case of some hormones, and produce responses in distant cells, called endocrine signaling. Contact-dependent signaling describes physical pathways created between neighboring cells through which cytoplasmic signals can rapidly pass. Nervous system cells can generate rapid responses through a specialization of cell signaling called synaptic signaling.

Tagi
Cell SignalingIntercellular SignalingLigandIntracellular SignalingQuorum SensingAutocrine SignalingParacrine SignalingContact dependent SignalingEndocrine SignalingSynapsesNeurotransmitters

Z rozdziału 6:

article

Now Playing

6.1 : What is Cell Signaling?

Cell Signaling

105.0K Wyświetleń

article

6.2 : Sygnalizacja bakteryjna

Cell Signaling

30.0K Wyświetleń

article

6.3 : Sygnalizacja drożdży

Cell Signaling

14.1K Wyświetleń

article

6.4 : Sygnalizacja zależna od kontaktu

Cell Signaling

43.8K Wyświetleń

article

6.5 : Sygnalizacja autokrynna

Cell Signaling

47.4K Wyświetleń

article

6.6 : Sygnalizacja parakrynna

Cell Signaling

54.3K Wyświetleń

article

6.7 : Sygnalizacja synaptyczna

Cell Signaling

74.4K Wyświetleń

article

6.8 : Receptory sprzężone z białkiem G

Cell Signaling

109.0K Wyświetleń

article

6.9 : Receptory wewnętrzne

Cell Signaling

67.6K Wyświetleń

article

6.10 : Sygnalizacja hormonalna

Cell Signaling

63.6K Wyświetleń

article

6.11 : Kim są Drugi Posłańcy?

Cell Signaling

80.7K Wyświetleń

article

6.12 : Wewnątrzkomórkowe kaskady sygnalizacyjne

Cell Signaling

45.6K Wyświetleń

article

6.13 : Kanały jonowe

Cell Signaling

84.6K Wyświetleń

article

6.14 : Receptory sprzężone z enzymami

Cell Signaling

75.2K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone