JoVE Logo

Zaloguj się

10.7 : Hybridization of Atomic Orbitals II

sp3d and sp3d 2 Hybridization

To describe the five bonding orbitals in a trigonal bipyramidal arrangement, we must use five of the valence shell atomic orbitals (the s orbital, the three p orbitals, and one of the d orbitals), which gives five sp3d hybrid orbitals. With an octahedral arrangement of six hybrid orbitals, we must use six valence shell atomic orbitals (the s orbital, the three p orbitals, and two of the d orbitals in its valence shell), which gives six sp3d 2 hybrid orbitals. These hybridizations are only possible for atoms that have d orbitals in their valence subshells (that is, not those in the first or second period).

In a molecule of phosphorus pentachloride, PCl5, there are five P–Cl bonds (thus five pairs of valence electrons around the phosphorus atom) directed toward the corners of a trigonal bipyramid. We use the 3s orbital, the three 3p orbitals, and one of the 3d orbitals to form the set of five sp3d hybrid orbitals that are involved in the P–Cl bonds. Other atoms that exhibit sp3d hybridization include the sulfur atom in SF4 and the chlorine atoms in ClF3 and in ClF4+

The sulfur atom in sulfur hexafluoride, SF6, exhibits sp3d 2 hybridization. A molecule of sulfur hexafluoride has six bonding pairs of electrons connecting six fluorine atoms to a single sulfur atom. There are no lone pairs of electrons on the central atom. To bond six fluorine atoms, the 3s orbital, the three 3p orbitals, and two of the 3d orbitals form six equivalent sp3d 2 hybrid orbitals, each directed toward a different corner of an octahedron. Other atoms that exhibit sp3d 2 hybridization include the phosphorus atom in PCl6, the iodine atom in the interhalogens IF6+, IF5, ICl4, IF4, and the xenon atom in XeF4.

This text has been adapted from Openstax, Chemistry 2e, Section 8.2: Hybrid Atomic Orbitals.

Tagi

HybridizationAtomic OrbitalsTrigonal BipyramidalOctahedralMolecular ShapesSp3d Hybrid OrbitalsPhosphorus PentachlorideSulfur HexafluorideSp3d2 Hybrid OrbitalsMultiple BondsPi BondSigma BondEthene MoleculeSp2 Hybridization

Z rozdziału 10:

article

Now Playing

10.7 : Hybridization of Atomic Orbitals II

Chemical Bonding: Molecular Geometry and Bonding Theories

31.3K Wyświetleń

article

10.1 : Teoria VSEPR i podstawowe kształty

Chemical Bonding: Molecular Geometry and Bonding Theories

67.1K Wyświetleń

article

10.2 : Teoria VSEPR i wpływ samotnych par

Chemical Bonding: Molecular Geometry and Bonding Theories

41.5K Wyświetleń

article

10.3 : Przewidywanie geometrii molekularnej

Chemical Bonding: Molecular Geometry and Bonding Theories

34.0K Wyświetleń

article

10.4 : Kształt molekularny i polarność

Chemical Bonding: Molecular Geometry and Bonding Theories

59.4K Wyświetleń

article

10.5 : Teoria wiązań walencyjnych

Chemical Bonding: Molecular Geometry and Bonding Theories

31.4K Wyświetleń

article

10.6 : Hybrydyzacja orbitali atomowych I

Chemical Bonding: Molecular Geometry and Bonding Theories

45.9K Wyświetleń

article

10.8 : Teoria orbitali molekularnych I

Chemical Bonding: Molecular Geometry and Bonding Theories

31.4K Wyświetleń

article

10.9 : Teoria orbitali molekularnych II

Chemical Bonding: Molecular Geometry and Bonding Theories

18.8K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone