Zaloguj się

The formation of a solution is an example of a spontaneous process, which is a process that occurs under specified conditions without energy from some external source.

When the strengths of the intermolecular forces of attraction between solute and solvent species in a solution are no different than those present in the separated components, the solution is formed with no accompanying energy change. Formation of the solution requires the solute–solute and solvent–solvent electrostatic forces to be overcome completely as attractive forces are established between the solute and solvent molecules. If the electrostatic forces within the solute are significantly greater than the solvation forces, the dissolution process is significantly endothermic and the compound may not dissolve to an appreciable extent. On the other hand, if the solvation forces are much stronger than the compound’s electrostatic forces, the dissolution is significantly exothermic and the compound may be highly soluble.

In the process of dissolution, an internal energy change often, but not always, occurs as heat is absorbed or evolved. An increase in matter dispersal always results when a solution forms from the uniform distribution of solute molecules throughout a solvent. Spontaneous solution formation is favored, but not guaranteed, by exothermic dissolution processes. While many soluble compounds do, indeed, dissolve with the release of heat, some dissolve endothermically. Endothermic dissolutions require greater energy input to separate the solute species than is recovered when the solutes are solvated, but they are spontaneous nonetheless due to the increase in disorder that accompanies the formation of the solution.

This text is adapted from Openstax, Chemistry 2e, Section 11.1: The Dissolution Process.

Tagi
EnergeticsSolution FormationSpontaneous ProcessIntermolecular ForcesSoluteSolventEnergy ChangeElectrostatic ForcesDissolution ProcessEndothermicExothermicSolvation ForcesHighly SolubleInternal Energy ChangeHeat AbsorptionMatter Dispersal

Z rozdziału 2:

article

Now Playing

2.3 : Energetics of Solution Formation

Thermodynamics and Chemical Kinetics

6.6K Wyświetleń

article

2.1 : Reakcje chemiczne

Thermodynamics and Chemical Kinetics

9.6K Wyświetleń

article

2.2 : Entalpia i ciepło reakcji

Thermodynamics and Chemical Kinetics

8.0K Wyświetleń

article

2.4 : Entropia i solwatacja

Thermodynamics and Chemical Kinetics

6.9K Wyświetleń

article

2.5 : Energia swobodna Gibbsa i korzystność termodynamiczna

Thermodynamics and Chemical Kinetics

6.3K Wyświetleń

article

2.6 : Równowaga chemiczna i rozpuszczalność

Thermodynamics and Chemical Kinetics

4.0K Wyświetleń

article

2.7 : Prawo stawek i porządek reakcji

Thermodynamics and Chemical Kinetics

9.0K Wyświetleń

article

2.8 : Wpływ zmiany temperatury na szybkość reakcji

Thermodynamics and Chemical Kinetics

3.9K Wyświetleń

article

2.9 : Reakcje wieloetapowe

Thermodynamics and Chemical Kinetics

7.1K Wyświetleń

article

2.10 : Energia dysocjacji wiązań i energia aktywacji

Thermodynamics and Chemical Kinetics

8.0K Wyświetleń

article

2.11 : Diagramy energetyczne, stany przejściowe i produkty pośrednie

Thermodynamics and Chemical Kinetics

15.2K Wyświetleń

article

2.12 : Przewidywanie wyników reakcji

Thermodynamics and Chemical Kinetics

7.6K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone