Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here we demonstrate cytoplasmic microinjection of Xenopus laevis oocytes with a nuclear import substrate, as well as preparation of the injected oocytes for visualization by thin-sectioning electron microscopy.
Microinjection of Xenopus laevis oocytes followed by thin-sectioning electron microscopy (EM) is an excellent system for studying nucleocytoplasmic transport. Because of its large nucleus and high density of nuclear pore complexes (NPCs), nuclear transport can be easily visualized in the Xenopus oocyte. Much insight into the mechanisms of nuclear import and export has been gained through use of this system (reviewed by Panté, 2006). In addition, we have used microinjection of Xenopus oocytes to dissect the nuclear import pathways of several viruses that replicate in the host nucleus.
Here we demonstrate the cytoplasmic microinjection of Xenopus oocytes with a nuclear import substrate. We also show preparation of the injected oocytes for visualization by thin-sectioning EM, including dissection, dehydration, and embedding of the oocytes into an epoxy embedding resin. Finally, we provide representative results for oocytes that have been microinjected with the capsid of the baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV) or the parvovirus Minute Virus of Mice (MVM), and discuss potential applications of the technique.
Part 1: Preparation of Xenopus oocytes for microinjection
Part 2: Microinjection of Xenopus oocytes
Part 3: Dissection of Xenopus oocytes
Part 4: Preparation of Injected Oocytes for Embedding and Thin-Sectioning EM
Part 5: Representative Results:
If the protocol has been successful, then the nuclear envelope (NE) and NPCs should be clearly visible in EM micrographs. Depending on the substrate injected and the amount of time between injection and fixation, the substrate should be visible at the cytoplasmic face of the NPC, in the NPC, or at the nuclear face of the NPC.
Figure 1 shows a NE cross-section with adjacent cytoplasm (c) and nucleus (n) from a Xenopus oocyte that has been injected with capsids of the baculovirus AcMNPV, incubated at 4°C for four hours, and processed for embedding and thin section EM as described. Arrowheads point to NPCs. A capsid docking at the cytoplasmic face of a NPC is indicated by a white arrow.
In contrast, Figure 2 shows a NE cross-section with adjacent cytoplasm (c) and nucleus (n) from a Xenopus oocyte that has been injected with the parvovirus Minute Virus of Mice (MVM), incubated at room temperature for four hours, and processed for embedding and thin section EM as described. Using this technique, we have found that MVM induces disruptions of the NE (Cohen and Panté, 2005). Brackets indicate breaks in the NE. Arrowheads point to NPCs. Putative MVM capsids associated with the NE are indicated by white arrows.
Figure 1: Electron micrograph of a NE cross-section with adjacent cytoplasm (c) and nucleus (n) from a Xenopus oocyte that has been injected with capsids of the baculovirus AcMNPV, incubated at 4°C for four hours, and processed for embedding and thin section EM as described. Arrowheads point to NPCs. Capsids are indicated by white arrows. Scale bar: 100 nm.
Figure 2: Electron micrograph of a NE cross-section with adjacent cytoplasm (c) and nucleus (n) from a Xenopus oocyte that has been injected with the parvovirus Minute Virus of Mice (MVM), incubated at room temperature for four hours, and processed for embedding and thin section EM as described. Arrowheads point to NPCs. Brackets indicate breaks in the NE. Putative MVM capsids associated with the NE are indicated by white arrows. Scale bar: 100 nm.
Microinjection of Xenopus oocytes combined with thin-sectioning EM is a highly effective tool for studying nucleocytoplasmic transport. This system has been used to map distinct steps of import through the NPC, for example interaction of a nuclear import substrate with structural components of the NPC such as the cytoplasmic filaments and nuclear basket (reviewed by Panté, 2006). It has also been used to study the nuclear import of nuclear-replicating viruses (Panté and Kann, 2002; Rabe et al.<...
We thank David Theilmann (Pacific Agri-Food Research Centre, Summerland, British Columbia) for providing the baculovirus AcMNPV and for helpful discussion.
This work was supported by grants from the Canada Foundation for Innovation (CFI), the Canadian Institutes of Health Research (CIHR), the Michael Smith Foundation for Health Research (MSFHR), and the Natural Sciences and Engineering Research Council of Canada (NSERC).
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone