Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Adult-born neurons expressing ChR2 can be manipulated in slice electrophysiological preparations in order to examine their contribution towards the function of olfactory neural circuits.
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations1,2. With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channelrhodopsin-2 (ChR2) allows researchers to activate neurons with light3,4. By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
1. Optical Calibration: Measuring LED Power
2. Slicing Procedure and Electrophysiology
Part A: Slice Preparation
Part B: Loose Patch Measurement of the Threshold to Spike
3. Representative Results:
On our microscope (Olympus BX51WI), our LED is in line with 2 apertures and a condenser lens, thus maintaining the original lightpath of the factory-installed arc lamp. By closing both the field diaphragm and the aperature diaphragm, we can achieve brightfield contrast sufficient for patch clamp recordings (fig. 1b). With all diaphragms fully open we expose the slice to maximum light power for channelrhodopsin activation (fig. 1a). On our microscope, this patching configuration produces light-density that is approximately three orders of magnitude lower than the maximum full field density (4.1 μW/mm2 versus 6.88 mW/mm2).
We see robust labeling of adult-born olfactory bulb granule and periglomerular neurons weeks after lentiviral infection of migrating neuroblasts in the rostral migratory stream (fig. 2a) A loose-patch recording from a single adult-born ChR2-EYFP expressing granule cell indicates that a 5 ms stimulation at maximum power (6.88 mW/mm2) is sufficient to evoke spiking (fig. 2b). Since expression level varies between cells, the amount of light that passes the threshold to spike will vary and should be described statistically for each cell type of interest.
Figure 1. LED array setup for full-field photostimulation and patch-clamp slice electrophysiology. To activate channelrhodopsin (ChR2) we project a collimated beam through open back apertures and condenser optics (a). This configuration can be changed into high-contrast patching optics by fully closing the field diaphragm and modulating the width of the field diaphragm (b). Abbreviations: a. fan, b. heatsink, c. LED array, d. collimating lens, e. mirror, f. field diaphragm, g. aperture diaphragm, h. condenser lens, i. sample stage, j. objective.
Figure 2. Image of a 300μm horizontal slice of olfactory bulb for patch clamp and whole-field photostimulation (a). Lentivirally infected adult-born granule cells expressing ChR2-EYFP can be seen radiating from the core of the olfactory bulb. The light-dose required to evoke spiking can be found by increasing the duration of the LED flash (b). The threshold for this granule cell was 5ms at full LED intensity (2.43mW/mm2). Scale in (a) = 500μm, scale in (b) = 50ms.
Recent years have seen an explosion in the popularity of optogenetic tools for neuroscience research6. As a result, it is increasingly important to lower the barrier of entry for labs wishing to begin using these new tools. Here we describe how to conduct a simple and low cost retrofitting and calibration of a conventional patch-clamp rig so that it can do full-field optical stimulation of channelrhodopsin-expressing neurons. In particular, we apply this technique to the study of olfactory bulb adult neuroge...
No conflicts of interest declared.
This work was supported by the life insurance company "AG2R-La-Mondiale", Ecole des Neurosciences de Paris (ENP), the Agence Nationale de la Recherche "ANR-09-NEUR-004" in the frame of "ERA-NET NEURON" of FP7 program by the European Commission, and the Pasteur Foundation. Sebastien Wagner was supported by the Letten Foundation.
Name | Company | Catalog Number | Comments |
Ketamine | Imalgène 1000 | 100 mg/ml | |
Xylazine | Rompun | 2% | |
NaCl | Sigma-Aldrich | S5886 | &nbps; |
KCl | Sigma-Aldrich | P5405 | |
MgSO4 | Sigma-Aldrich | M1880 | |
NaHCO3 | Sigma-Aldrich | S5761 | |
NaHPO4 | Sigma-Aldrich | S5011 | |
Glucose | Sigma-Aldrich | G7021 | |
CaCl2 | Sigma-Aldrich | C7902 | |
Agarose | Sigma-Aldrich | A9539 | |
Pipette Puller | Sutter Instrument Co. | P-97 | |
Glass Capillaries | Harvard Apparatus | GC150T-10 | 1.5 mm O.D./1.17 mm I.D. |
LED array | Bridgelux | BXRA-C2000 | |
Collimating lens | Thorlabs Inc. | LEDC1 | 40 mm beam diameter |
Power supply | A1W Electronik | HKO2800 | 2.8 amp |
Optical power meter | Thorlabs Inc. | PM 100 | |
Heatsink | Thermaltake | A1838 | Silent Boost K8 |
Fan | Thermaltake | A1838 | Silent Boost K8 |
Vibratome | Leica Microsystems | VT1200S |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone