Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We provide a protocol for the culture of highly purified hippocampal neurons from prenatal mouse brains without the use of a feeder glial cell layer.
Primary cultures of rat and murine hippocampal neurons are widely used to reveal cellular mechanisms in neurobiology. By isolating and growing individual neurons, researchers are able to analyze properties related to cellular trafficking, cellular structure and individual protein localization using a variety of biochemical techniques. Results from such experiments are critical for testing theories addressing the neural basis of memory and learning. However, unambiguous results from these forms of experiments are predicated on the ability to grow neuronal cultures with minimum contamination by other brain cell types. In this protocol, we use specific media designed for neuron growth and careful dissection of embryonic hippocampal tissue to optimize growth of healthy neurons while minimizing contaminating cell types (i.e. astrocytes). Embryonic mouse hippocampal tissue can be more difficult to isolate than similar rodent tissue due to the size of the sample for dissection. We show detailed dissection techniques of hippocampus from embryonic day 19 (E19) mouse pups. Once hippocampal tissue is isolated, gentle dissociation of neuronal cells is achieved with a dilute concentration of trypsin and mechanical disruption designed to separate cells from connective tissue while providing minimum damage to individual cells. A detailed description of how to prepare pipettes to be used in the disruption is included. Optimal plating densities are provided for immuno-fluorescence protocols to maximize successful cell culture. The protocol provides a fast (approximately 2 hr) and efficient technique for the culture of neuronal cells from mouse hippocampal tissue.
1. Set-up Prior to Harvest
2. Tissue Harvest
3. Tissue Dissociation
4. Neuron Trituration
5. Cell Plating
6. Representative Results
The ability to grow and culture primary neuronal cells has become an indispensible part of neuroscience. Primary cultures allow the researcher to analyze specific cellular pathways, chemical modification and treatment, target localization and growth patterns in a controlled environment. Many of these procedures utilize sophisticated methodology to visualize specific changes in cell responses. In this case, hippocampal neurons are used to study specific neuronal pathways that would prove difficult, if not impossible to analyze in the intact brain. Preparation of near homogeneous populations of neurons from specific areas of the brain is critical for studying brain function. Molecular effects in individual neurons can be instrumental in delineating higher order pathways such as memory or learning. As this protocol yields relatively pure cultures of hippocampal neurons, without the need of a feeder layer of glial cells, these neurons are easily utilized for immunofluorescence studies. However, as with all primary culture from organs containing multiple cell types, some contamination by less desired cells can occur. In isolation of neuronal cells, contamination by glial cells can be a common problem. Glial cells can be easily detected upon microscopic visualization of the culture as their morphology differs significantly from the target neurons (Figure 6). The impact of glial cell contamination will depend on the planned use of the cultures. If cells are being used for immuno-fluorescence examination, glial contamination can be nothing more than an inconvenience when trying to photograph individual neurons. However, if the neuronal cultures are to be used for biochemical analysis, any significant contamination by glial cells could cause major changes in the results. Ways to address glial cell contamination are outlined further in the Discussion.
Once neurons have been successfully isolated and grown in culture, one typical application is to examine cellular processes immuno-fluorescence techniques. As illustrated in Figure 7, organelles, such as the mitochondria, can be stained using vital dyes added to the culture media prior to fixation. Endogenous cellular proteins can be visualized from fixed cells using standard immuno-fluorescence techniques (Figure 8). Once neuronal cells are fixed, specific antibodies for proteins of interest can be introduced to the cell and these proteins can be visualized using a fluorescence microscope. Cultured neurons also provide the researcher with the means to examine individual protein effects on neuronal functions. Using a variety of techniques including DNA transfections, electroporation or viral transduction, proteins can be overexpressed in neuronal cells (Figure 9). How neural cells respond to the effects of over-expressed proteins can have direct inferences on how the brain may respond and offers the possibility of identifying cellular targets for drug treatments. The details of these types of experiments go beyond the scope of this paper but they do illustrate that cultures prepared by this technique are suitable for a wide array of down-stream applications. However, the overall simplicity of this protocol, as well as, the short time period required to prepare these neuronal cultures make this an ideal method for use in today's neuroscience laboratory.
Figure 1. Dissection of the prenatal mouse brain. The first incision is down the midline of the brain separating it into two hemispheres.
Figure 2. Location of the hippocampus in the prenatal mouse brain. The striatum is moved aside to visualize the hippocampus and is noted by the curved "kidney bean" type structure in the distal region of each hemisphere.
Figure 3. Dissociation of hippocampal tissue in trypsin solution.
Figure 4. Pasteur pipette tips used in trituration of hippocampal tissue. (a) Normal Pasteur pipette tip. (b) Fire-polished Pasteur pipette tip. Take note of the rounded edges and the approximate 50% decrease in pipette opening size.
Figure 5. Hippocampal neurons isolated using this procedure and plated in NB Media. (a) Cell growth 1 day post-plating. Neuronal processes begin to be visible during Day 1. (b) Cell growth 10 day post-plating, neurites are branched and overlapping.
Figure 6. Hippocampal neurons contaminated with glial cells grown for 7 days and stained with the organelle marker MitoTracker Red CM-H2XRos (Invitrogen #M7515) and transfected with GFP-LC3 using Lipofectamine 2000 (Invitrogen #11668019). Mitochondria are visible in all cells however only a single neuron was successfully transfected with the fluorescent construct. Contamination with glial cells makes analysis of GFP-LC3 expression in the neuronal processes difficult to visualize.
Figure 7. Hippocampal neurons grown for 7 days and stained with the organelle marker MitoTracker Red CM-H2 XRos (Invitrogen #M7513). This vital dye is used to stain active mitochondria in tissue culture cells. The cells were fixed in 4% paraformaldehyde/PBS and visualized by fluorescent microscopy. The dye itself is non-fluorescent until oxidized in the mitochondria. Active mitochondria can be seen throughout the neuronal processes.
Figure 8. Hippocampal neurons grown for 7 days, fixed with 4% paraformaldehyde/PBS and immuno-stained with monoclonal anti-tubulin β antibody (Sigma #T0198). Following primary antibody, Oregon Green labeled goat-anti-mouse secondary antibody (Invitrogen #O11033) was added and fluorescence visualized by microscopy.
Figure 9. Hippocampal neuronal cultures were grown for 5 days and transfected with GFP-LC3β DNA construct using Lipofectamine 2000 (Invitrogen #11668019). At Day 7, cells were fixed using 4% paraformaldehyde/PBS and aggresomes with GFP tagged LC3β incorporated into their outer membrane were visualized using fluorescent microscopy. Aggresomes are located throughout the cell body and neurites and are denoted with arrows.
Access restricted. Please log in or start a trial to view this content.
Hippocampal cultures have been used in molecular biology for more than 20 years. While in principle, neuronal cultures can be made from any part of the brain, hippocampal cultures have proven to be the most popular due to the relatively simple architecture of the nerve cell population in the hippocampus7. Hippocampal cultures are typically made from late-stage embryonic tissue. This tissue is easier to dissociate and contains fewer glial cells than does mature brain tissue1. Isolation of hippocampal...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
We thank Dr. Michael Wooten for his help in preparing the manuscript. This work was supported by NIH 2RO1NS033661 (MWW).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Rat Tail Collagen 1 | BD Biosciences | 354236 | |
Poly-D-lysine Solution | Chemicon | A-003-E | |
Hanks Balanced Salt Solution | Invitrogen | 14175-095 | |
Trypsin Solution (1X) 0.25%, liquid | Invitrogen | 15050-065 | |
NeuroBasal Medium (1X) liquid | Invitrogen | 21103-049 | |
B27 Supplement (50X) liquid | Invitrogen | 17504-044 | |
L-Glutamine 200 mM (100X) liquid | Invitrogen | 25030-149 | |
Penicillin (10,000 units/ml) / Streptomycin (10,000 μg/ml) | Invitrogen | 15140-148 | |
HI-Donor Horse Serum | Atlanta Biologicals | S12150H |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone