JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

A method to isolate submitochondrial vesicles enriched in F1FO ATP synthase complexes from rat brain is described. These vesicles allow the study of the activity of F1FO ATPase complex and its modulation using the technique of patch clamp recording.

Streszczenie

Mitochondria are involved in many important cellular functions including metabolism, survival1, development and, calcium signaling2. Two of the most important mitochondrial functions are related to the efficient production of ATP, the energy currency of the cell, by oxidative phosphorylation, and the mediation of signals for programmed cell death3.

The enzyme primarily responsible for the production of ATP is the F1FO-ATP synthase, also called ATP synthase4-5. In recent years, the role of mitochondria in apoptotic and necrotic cell death has received considerable attention. In apoptotic cell death, BCL-2 family proteins such as Bax enter the mitochondrial outer membrane, oligomerize and permeabilize the outer membrane, releasing pro-apoptotic factors into the cytosol6. In classic necrotic cell death, such as that produced by ischemia or excitotoxicity in neurons, a large, poorly regulated increase in matrix calcium contributes to the opening of an inner membrane pore, the mitochondrial permeability transition pore or mPTP. This depolarizes the inner membrane and causes osmotic shifts, contributing to outer membrane rupture, release of pro-apoptotic factors, and metabolic dysfunction. Many proteins including Bcl-xL7 interact with F1FO ATP synthase, modulating its function. Bcl-xL interacts directly with the beta subunit of F1FO ATP synthase, and this interaction decreases a leak conductance within the F1FOATPasecomplex, increasing the net transport of H+ by F1FO during F1FO ATPase activity8 and thereby increasing mitochondrial efficiency. To study the activity and modulation of the ATP synthase, we isolated from rodent brain submitochondrial vesicles (SMVs) containing F1FO ATPase. The SMVs retain the structural and functional integrity of the F1FO ATPase as shown in Alavian et al. Here, we describe a method that we have used successfully for the isolation of SMVs from rat brain and we delineate the patch clamp technique to analyze channel activity (ion leak conductance) of the SMVs.

Protokół

1. Brain Mitochondrial Isolation (Adapted from Brown M.R. et al.9)

  1. Sacrifice the rat using methods approved by the Institutional Animal Care and Use Committee (IACUC).
  2. Cut the head of the animal by decapitation, cut the skin and expose the skull.
  3. Open the skull gently by cutting with a scissor or rongeur. Remove the brain.
  4. Mince finely the brain without cerebellum in Isolation Buffer (see Table 1) and transfer it to a 5 ml glass/teflon homogenizer (see equipment list).
  5. Homogenize tissue gently 10 times (no bubbles), approximately 5 min.
  6. Centrifuge sample at 1,500 × g for 10 min at 4 °C in a bench-top centrifuge.
  7. Save the supernatant (mitochondrial and synaptosomes) and discard the pellet (nuclear material and cell debris). Centrifuge at 16,000 × g for 10 min at 4 °C in a bench-top centrifuge.
  8. Discard supernatant and re-suspend pellet in 500 μl of Isolation Buffer. Disrupt synaptosomes with a cell disruption vessel (see equipment list). Apply a pressure of 1,200 psi for 10 min, followed by rapid decompression.
  9. Layer the mixture onto Ficoll gradients (see Table 2), place in SW-50.1 rotor and centrifuge at 126,500 × g for 20 min at 4 °C in an ultracentrifuge (see equipment list). The pellet is the purified mitochondria, the layer between the different densities of Ficoll is undisrupted synaptosomes.
  10. Wash pellet by centrifuging in Isolation Buffer at 16,000 × g for 10 min at 4 °C in a bench-top centrifuge.

2. Submitochondrial Vesicles (SMV) Isolation (Adapted from Chan et al.10)

  1. Re-suspend mitochondria in 200 μl Isolation Buffer combined with an equal volume of 1% digitonin and allow to sit on ice for 15 min.
  2. Add more Isolation Buffer and centrifuge at 16,000 × g for 10 min at 4 °C in a bench-top centrifuge. Do this twice.
  3. Re-suspend pellet in 200 μl Isolation Buffer and add 2 μl of 10% Lubrol PX (C12E9). Mix and allow to sit on ice for 15 min.
  4. Layer mixture onto Isolation Buffer, place in SW-50.1 rotor and centrifuge at 182,000 × g at 4 °C for 1 hr.
  5. Wash final pellet by centrifuging in a desk-top centrifuge in Isolation Buffer at 16,000 × g for 10 min at 4 °C.

3. Electrophysiological Recording

  1. A typical electrophysiology rig includes an amplifier, a PC computer equipped with a Digidata 1440A analog-to-digital converter interface in conjunction with pClamp10.0 software, manipulators, a microscope, a vibration isolation table, Faraday Cage.
  2. Borosilicate glass capillary tubes are inserted into a Flaming/Brown Micropipette Puller Model P-87. A pipette-puller program is optimized to generate pipettes with resistances between 80 to 100 MΩ.
  3. SMVs are placed in a physiological intracellular solution (ATP is added at the appropriate time during the recording) (Table 3). Patch clamp pipettes are filled with the same solution (no ATP). Recordings are made by forming a giga-ohm seal onto SMVs at room temperature. Vesicles are visualized by phase-contrast microscopy with a Nikon or Zeiss inverted microscope.
  4. The membrane potential is maintained at voltages ranging from -100 mV to + 100 mV for periods of 10 seconds. Recordings are filtered at 5 kHz using the amplifier circuitry. Level of stray electrical or non-specific noise of less than 1 pA are desirable for successful recording.
  5. Data are analyzed with Clampfit 10.0 software for example to determine frequency and amplitude of single channel events. Voltage dependence is determined by plotting a current voltage relationship.

Wyniki

The first step of our protocol allows for isolation of purified mitochondria as shown by Western blot in Figure 1. In Figure 2 is shown an example of a brain-derived submitochondrial vesicle patch recording. Using the inside-out patch configuration we demonstrate channel activity modulated by ATP. The control (CTL) recording (left) shows multi-conductance channel activity with a peak conductance of 600 pS on average. that was immediately decreased upon addition of 1 mM ATP to the ba...

Dyskusje

The methods described herein enable the isolation of pure mitochondria at the end of step 1 and submitochondrial vesicles (SMVs) after step 2 from whole brain without distinction of cell phenotypes.SMVspurified by this method are essentially free of contamination by other subcellular organelles as shown in Figure 1 and our previous work (Alavian KN et al.8) and retain their structural and functional integrity prior to freezing. After freezing and thawing, isolated mitochondria o...

Ujawnienia

No conflicts of interest declared.

Materiały

NameCompanyCatalog NumberComments
Potter-Elvehjem Tissue Grinder withPTFEPestleKrackeler Scientific, Inc.1-7725T-5
Eppendorf Centrifuge 5424 Eppendorf5424 000.410
4639 Cell Disruption VesselParr Instrument Company4639
FicollSigma-AldrichF5415
Polycarbonate centrifuge tubesBeckman CoulterP20314
SW-50.1 rotor Beckman Coulter
L8-70M UltracentrifugeBeckman Coulter
DigitoninSigma-AldrichD5628
Lubrol PX (C12E9) Calbiochem205534
Axopatch 200B Axon Instruments
Digidata 1440A Molecular Device
pClamp10.0Molecular Device
ManipulatorSutter Instrument
Borosilicate glass capillaryWorld Precision Instruments1308325
Flaming/Brown Micropipette Puller Model P-87Sutter Instrument

Odniesienia

  1. Cheng, W. C., Berman, S. B., Ivanovska, I., Jonas, E. A., Lee, S. J., Chen, Y., Kaczmarek, L. K., Pineda, F., Hardwick, J. M. Mitochondrial factors with dual roles in death and survival. Oncogene. 25, 4697-4705 (2006).
  2. Duchen, M. R., et al. Mitochondria and calcium in health and disease. Cell Calcium. 44, 1-5 (2008).
  3. Lemasters, J. J. Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. J. Gastroenterol. Hepatol. 22, S31-S37 (2007).
  4. Cox, G. B., Jans, D. A., Fimmel, A. L., Gibson, F., Hatch, L. Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit. Biochim. Biophys. Acta. 768, 201-208 (1984).
  5. Cox, G. B., Fimmel, A. L., Gibson, F., Hatch, L. The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. Biochim. Biophys. Acta. 849, 62-69 (1986).
  6. Cory, S., Huang, D. C., Adams, J. M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 22, 8590-8607 (2003).
  7. Vander Heiden, M. G., Thompson, C. B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis. Nat. Cell Biol. 1, 209-216 (1999).
  8. Alavian, K. N., Li, H., Collis, L., Bonanni, L., Zeng, L., Sacchetti, S., Lazrove, E., Nabili, P., Flaherty, B., Graham, M., Chen, Y., Messerli, S. M., Mariggio, M. A., Rahner, C., McNay, E., Shore, G. C., Smith, P. J. S., Hardwick, J. M., Jonas, E. A. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13 (10), 1224-1233 (2011).
  9. Brown, M. R., Sullivan, P. G., Dorenbos, K. A., Modafferi, E. A., Geddes, J. W., Steward, O. Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria. Journal of Neuroscience Methods. 137, 299-303 (2004).
  10. Chan, T. L., Greenawalt, J. W., Pedersen, P. L. Biochemical and ultrastructural properties of a mitochondrial inner membrane fraction deficient in outer membrane and matrix activities. J. Cell Biol. 45 (2), 291-305 (1970).
  11. Young, H. K. o., Delannoy, M., Hullihen, J., Chiu, W., Pedersen, P. L. Mitochondrial ATP Synthasomes. J. Biol. Chem. 278 (14), 12305-12309 (2003).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

F1FO ATPaseVesicle PreparationPatch Clamp RecordingsSubmitochondrial Vesicle MembranesMitochondriaATP ProductionOxidative PhosphorylationProgrammed Cell DeathF1FO ATP SynthaseApoptosisNecrosisBCL 2 Family ProteinsMitochondrial Outer MembranePro apoptotic FactorsCytosolNecrotic Cell DeathMatrix CalciumMitochondrial Permeability Transition Pore mPTPInner Membrane PoreBcl xL Protein

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone