Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here we describe a procedure to image viral complexes in liquid at nanometer resolution using a transmission electron microscope.
Researchers regularly use Transmission Electron Microscopes (TEMs) to examine biological entities and to assess new materials. Here, we describe an additional application for these instruments- viewing viral assemblies in a liquid environment. This exciting and novel method of visualizing biological structures utilizes a recently developed microfluidic-based specimen holder. Our video article demonstrates how to assemble and use a microfluidic holder to image liquid specimens within a TEM. In particular, we use simian rotavirus double-layered particles (DLPs) as our model system. We also describe steps to coat the surface of the liquid chamber with affinity biofilms that tether DLPs to the viewing window. This permits us to image assemblies in a manner that is suitable for 3D structure determination. Thus, we present a first glimpse of subviral particles in a native liquid environment.
A common goal of biologists and engineers is to understand the inner-workings of molecular machines. Transmission Electron Microscopes (TEMs) are ideal instruments to visualize these intricate details at near-atomic resolution1-2. In order to sustain the high vacuum system of a TEM, biological samples are typically embedded in thin films of vitreous ice3, sugars4, heavy metal salts5, or some combination thereof6. As a result, images of embedded specimens may reveal only limited snapshots of dynamic processes.
Early attempts to maintain biological specimens hydrated in environmental liquid chambers were undertaken by Parsons and colleagues using differential pumping stages. Electron diffraction patterns of unstained catalase crystals were successfully recorded to a resolution of 3 Å in a hydrated state7-8. In addition, phase-separated lipid domains could be examined in hydrated membranes of human erythrocytes9-10. However, motion caused by diffusing liquid and its interference with the electron beam, resulted in severe resolution loss and further experiments using biological specimens were not attempted until recently.
Newly developed microfluidic specimen holders have been introduced that utilize semiconductor microchips to form a micro-scaled environmental chamber. These devices can maintain samples in liquid while they are positioned in a TEM column11-12. This technical breakthrough in TEM imaging has allowed researchers to view, for the first time, progressive events at the molecular level13. We refer to this new modality as “in situ molecular microscopy” as experiments can now be performed “inside” the EM column14-15. The overall goal of this method is to image biological assemblies in liquid in order to observe their dynamic behaviors at nanometer resolution. The rationale behind the developed technique is to record real-time observations and examine new properties of biological machinery in solution. This methodology expands the use of TEMs for broader purposes in cellular and molecular biology12-16.
In the current video article, we present a comprehensive protocol to assemble and use a commercially available microfluidic specimen holder. These specialized holders utilize silicon nitride microchips produced with integrated spacers to form a liquid chamber that encloses minute volumes of solution. Thin, transparent windows are etched into the microchips for imaging purposes12. We demonstrate the proper use of a microfluidic holder to examine simian rotavirus double-layered particles (DLPs) in liquid using a TEM. To ensure that biological assemblies, such as DLPs, do not rapidly diffuse over great distances while imaging, we employ the Affinity Capture approach to tether them to the surface of the microfluidic chamber16. This molecular capture step has a major advantage over alternative techniques for imaging biological specimens in liquid because it allows for the acquisition of images that will be used for downstream processing routines. This capture step used in conjunction with microfluidic imaging is unique to our procedures17. Readers employing structural biology applications using TEM or microfluidic imaging chambers may consider the use of affinity capture techniques when dynamic observations at the molecular level are the end goal.
1. Prepare Affinity Capture Devices16
2. Capture Macromolecules17
3. Assemble the Microfluidic Chamber and Load the In situ Specimen Holder
4. Imaging in Liquid Using a Transmission Electron Microscope
Representative images of DLPs in liquid using E-chips that were glow-discharged (Figure 3A) show fewer DLPs in a given viewing area, presumably due to diffusion, in comparison to DLPs that are enriched on Affinity Capture devices (Figure 3B). The addition of uranyl formate in the imaging chamber enhances the contrast of the specimen and hence the visibility of individual DLPs in solution (Figure 3C, top panel). Better contrast allows for downstream image p...
In our presented work, we employed the affinity capture approach to tether rotavirus DLPs to a microfluidic platform. This allowed for in situ imaging of macromolecular complexes in a liquid microenvironment. The capture approach is significant with respect to other microfluidic imaging techniques because it localizes biological specimens to the imaging window to negate large diffusive issues that arise while recording images in liquid. However, one of the most critical steps in our protoc...
The author, Madeline J. Dukes, is an employee of Protochips, Inc.
The authors acknowledge Dr. Michael J. Friedlander, Director of the Virginia Tech Carilion Research Institute for encouraging our research endeavors. This project was supported by development funds to S.M.M and D.F.K. and in part by the Nano-Bio initiative of the Institute for Critical Technology and Applied Science at Virginia Tech.
Name | Company | Catalog Number | Comments |
E-chips, spacer chip | Protochips, Inc. | EPB-52TBD | 400 μm x 50 μm window |
E-chip, top chip | Protochips, Inc. | EPT-45W | 400 μm x 50 μm window |
Ni-NTA lipid | Avanti Polar Lipids | 790404P | Powder form |
DLPC (12:0) lipid | Avanti Polar Lipids | 850335P | Powder form |
Volumetric flasks | Fisher Scientific | 20-812A; 20-812C | 1 ml; 5 ml |
Hamilton Syringes | Hamilton Co. | 80300, 80400 | 1-10 μl; 1-25 μl |
Whatman #1 filter paper | Whatman | 1001 090 | 100 pieces, 90 mm |
Glass Petri dishes | Corning | 70165-101 | 100 mm x 15 mm |
Glass Pasteur pipettes | VWR | 14673-010 | 14673-010 |
Glass culture tubes | VWR | 47729-566 | 6 mm x 50 mm |
Acetone | Fisher Scientific | A11-1 | 1 L |
Methanol | Fisher Scientific | A412-1 | 1 L |
Chloroform | Electron Microcopy Sciences | 12550 | 100 ml |
His-tagged Protein A | Abcam, Inc. | ab52953 | 10 mg |
Milli-Q water system | EMD Millipore Corp. | Z00QSV001 | Ultrapure Water |
HEPES | Fisher Scientific | BP310-500 | 500 g |
Equipment | |||
Poseidon In situ specimen holder | Protochips, Inc. | FEI compatible | |
FEI Spirit BioTwin TEM | FEI Co. | 120 kV | |
Eagle 2k HS CCD camera | FEI Co. | 10 Å/pixel sampling at 30,000X | |
Gatan 655 Dry pump station | Gatan, Inc. | Pump holder tip to 10-6 range | |
PELCO easiGlow, glow discharge unit | Ted Pella, Inc. | Negative polarity mode | |
Isotemp heated stir plate | Fisher Scientific | Heat to 150 ºC for 1.5 hr |
This corrects the article 10.3791/50936
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone