Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Amoebal coculture is a cell culture system using adherent amoebae to selectively grow intracellular pathogens able to resist phagocytic cells such as amoebae and macrophages. It thus represents a key tool to discover new infectious agents. Amoebal enrichment allows discovery of new amoebal species and of their specific intracellular bacteria.
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.
Before the advent of molecular diagnosis, microorganisms present in environmental niches or in clinical samples were often detected by cultivating them on different selective media, mainly on agar in Petri dishes. The phenotype of the bacterial colonies and their metabolic activity then allowed bacterial classification at species level. Broth may also be used to increase the sensitivity of detection. However, both techniques do not allow the recovery of bacteria that grow slowly or not at all on these media. This is the reason why molecular approaches are so widely used nowadays. Nevertheless, detection of DNA provides no clue on the viability of the bacteria. Moreover, contrarily to culture, molecular approaches do not result in a strain that can be further characterized.
Studying pathogens that grow poorly on solid media or that need cells to grow is complicated. Most of these "difficult to grow" bacteria are fastidious intracellular bacteria, often discovered and characterized following large outbreaks as it was the case for Legionella pneumophila. This bacterium was characterized following an outbreak that occurred during an American Legion convention. As many as 182 persons were infected and 29 died due to a severe pneumonia1,2. It was later demonstrated that amoebae were the natural hosts of this bacterium and that their presence in the hotel air-conditioning system and water networks was at the origin of the outbreak of the so-called Legionnaire's disease3.
Amoebae are present worldwide and were isolated from soil, air, water and the nasal mucosa of human volunteers (reviewed in 4). These "free-living" amoebae are generally dividing autonomously in the environment but may occasionally invade permissive hosts5. Amoebae feed on various microorganisms through phagocytosis and subsequent lysosomal digestion by hydrolases6. Many facultative or obligate intracellular bacteria are able to resist digestion and thus infect and divide in amoebae as for example Legionella, Chlamydia-related bacteria or mycobacteria (reviewed in 7 and 8). Free-living amoebae likely represent an important potential reservoir for intracellular bacteria that have yet not been discovered. This led our group to implement in Lausanne two main techniques, called amoebal coculture and amoebal enrichment, which allowed different groups to isolate several new obligate intracellular microorganisms from various environmental samples9-15.
Since amoebae are professional phagocytes grazing on bacteria, a bacterium able to resist phagocytosis and to grow inside these protists might also colonize human phagocytes and be pathogenic towards humans. This was partially demonstrated for some Chlamydia-related bacteria, such as Waddlia chondrophila. W. chondrophila can grow not only in amoebae but also in several cell types such as mammalian epithelial cells, macrophages, and fish cell lines16-18. The amoebal coculture also appears relevant for detecting intracellular bacteria in clinical samples19,20, including stools which are heavily contaminated with different bacterial species21.
Here we describe the major steps of amoebal coculture and amoebal enrichment, including (a) treatment of environmental or clinical samples; (b) the growth of amoebae on axenic media and on a bacterial lawn of Escherichia coli and (c) the selection and characterization of intracellular bacteria.
1. Amoebal Coculture
1.1 Sample preparation
1.2 Amoebae preparation
1.3 Coculture
1.4 Bacterial isolation and characterization
2. Amoebal Enrichment
2.1. Sample preparation
Resuspend solid and semi-solid samples in PAS by vortexing. Centrifuge the suspension at low speed (180 x g) for 10 min. This allows enrichment of free-living amoebae in the pellet. The supernatant can be used for amoebal coculture and the pellet for amoebal enrichment21.
2.2. Medium preparation
2.3. Sample inoculation
Add a drop of sample (or a piece of filter) on one side of the plate and let it flow over the Petri dish to form a line in the center of the dish.
2.4. Amoebal growth and amoebal subculture
2.5. Amoebae and bacteria characterization
Using amoebal coculture and amoebal enrichment, a whole range of environmental and/or pathogenic bacteria were discovered (Table 1).
Amoebal coculture was used by our group and others to analyze environmental samples, water treatment plants and water distribution systems. A broad range of microorganisms could be isolated with this technique. The most common bacteria isolated by amoebal coculture are members of the Mycobacterium genus that could be recovered from water...
Amoebal coculture and amoebal enrichment are efficient methods that allowed the isolation of many new bacterial and amoebal species. Results obtained with these methods confirm the ubiquitous presence of both amoebae and amoeba-resisting bacteria in the environment, and most interestingly in manmade water networks that are considered to be controlled by chemical treatments such as chlorination and ozonation. Amoebal coculture and amoebal enrichment are essential tools to isolate and cultivate these potentially pathogenic...
The authors declare that they have no competing financial interests.
We thank Pr. Bernard La Scola for helpful technical advices and interesting discussion on amoebal coculture and amoebal enrichment. We also thank Dr Vincent Thomas for his help in implementing the technique in our laboratory.
Name | Company | Catalog Number | Comments |
Glucose monohydrate | Merck, Darmstadt, Germany | 108342 | |
0.22 μm pore size membrane | Merck Millipore, Darmstadt, Germany | SCVPU11RE | |
proteose peptone | Becton-Dickinson, Franklin Lakes, NJ | 211693 | |
yeast extract | Becton-Dickinson, Franklin Lakes, NJ | 212750 | |
Cell culture flasks | Becton-Dickinson, Franklin Lakes, NJ | 353135 | |
Kova slide | Hycor, Indianapolis, IN | 87144 | |
cell culture microplates | Corning Inc, Corning, NY | 3524 | |
Diff-Quik staining kit | Siemens Healthcare diagn., Munich, Germany | 130832 | |
Ziehl fuchsin | Fluka, St-Louis, MI | 21820 | |
basic fuchsin | Sigma, St-Louis, MI | 857843 | |
Phenol | Sigma, St-Louis, MI | P1037 | Corrosive and mutagenic |
malachite green oxalate | Fluka, St-Louis, MI | 63160 | |
Paraformaldehyde 16% solution | Electron Microscopy Sciences, Hatfield, PA | 15710 | |
Saponin | Sigma, St-Louis, MI | 84510 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone