Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Single fluorophores can be localized with nanometer precision using FIONA. Here a summary of the FIONA technique is reported, and how to carry out FIONA experiments is described.
Fluorescence imaging with one-nanometer accuracy (FIONA) is a simple but useful technique for localizing single fluorophores with nanometer precision in the x-y plane. Here a summary of the FIONA technique is reported and examples of research that have been performed using FIONA are briefly described. First, how to set up the required equipment for FIONA experiments, i.e., a total internal reflection fluorescence microscopy (TIRFM), with details on aligning the optics, is described. Then how to carry out a simple FIONA experiment on localizing immobilized Cy3-DNA single molecules using appropriate protocols, followed by the use of FIONA to measure the 36 nm step size of a single truncated myosin Va motor labeled with a quantum dot, is illustrated. Lastly, recent effort to extend the application of FIONA to thick samples is reported. It is shown that, using a water immersion objective and quantum dots soaked deep in sol-gels and rabbit eye corneas (>200 µm), localization precision of 2-3 nm can be achieved.
Around 1882, Ernst Abbe found that the resolution of a visible light microscope is ~λ/2NA, or ~200 nm (where λ is the wavelength and NA is the numerical aperture)1,2. Therefore any object smaller than this dimension would appear as a diffraction-limited spot in an optical microscope. However, it is possible to determine the center of the spot, that is, the location of the object, with a much higher precision3. Fluorescence imaging with one-nanometer accuracy (FIONA) is a simple but useful technique for localizing single fluorophores with nanometer precision in the x-y plane4. The precision of localization, σµ (i.e., the standard error of the mean), depends on the total number of collected photons, , where N is the photon count, s is the standard deviation of the fluorescent spot, a is the pixel size of the imaging detector, and b is the standard deviation of the background3,4. For a fluorophore emitting ~ 10,000 photons, FIONA can achieve ~1 nm precision4.
FIONA can be used to accurately determine the position of a stationary emitter, or a moving one (assuming images can be taken fast enough). FIONA can be applied sequentially to the frames of the movie and thus track the motion of the single molecule4-8. Photo-protective reagents may be necessary to ensure that the sample does not photodegrade. Furthermore, the fluorescent object itself may be of any size, smaller or larger than the diffraction limit—e.g., it may consist of an organelle (~1 µm) with many fluorescent proteins dispersed on its membrane. Using FIONA can still yield a very accurate (nanometer) average of its average center-of-mass. The great improvement in localization precision by FIONA allows resolving nanometer-scale movements over time. This has pushed microscopy into the molecular length scale4-8.
Since its invention, variants of FIONA have been developed. For example, bright-field imaging with one-nanometer accuracy (bFIONA)9, a slight variant of FIONA, images and localizes dense objects such as melanosomes in vivo (dark objects containing the pigment melanin) with transmitted light. In addition, FIONA has been employed to resolve multiple dyes. For example, single-molecule high-resolution imaging with photobleaching (SHRImP)10,11 or single-molecule high-resolution colocalization (SHREC)12 have been developed to resolve two dyes within about 10 nm. (Notice that this is resolution, i.e. how accurately one can tell identical dyes apart.) More recently, FIONA analysis has contributed to the localization process of certain super-resolution microscopy such as stochastic optical reconstruction microscopy (STORM)13-15 and photo-activated localization microscopy (PALM)16, in which temporary dark fluorophores are excited, and then the fluorescence is localized. By repeatedly exciting a fairly low density of dyes (less than one per diffraction limited spot), and then collecting the fluorescence, analyzing each of them by FIONA, one can build up a high-resolution map. The resolution is then just limited by the number of photons each dye puts out, as well as things like keeping the sample stationary (including, e.g., the microscope stage) during the acquisition.
In this paper, a summary of the FIONA technique and briefly describe examples of research that have been performed using FIONA is reported. First, how to set up the required equipment for FIONA experiments, i.e., a total internal reflection fluorescence microscopy (TIRFM), with details on aligning the optics, is described. Then how to carry out a simple FIONA experiment on localizing immobilized Cy3-DNA single molecules using appropriate protocols, is illustrated. After that, the use of FIONA to measure the 36 nm step size of a single truncated myosin Va motor labeled with a quantum dot is presented. Myosin Va is an essential processive motor protein which carries cellular cargo while translocating along actin filaments. Here a myosin Va construct truncated is used to remove domains irrelevant to the step size, and with a FLAG tag added to the C-terminus to allow ease of labeling with quantum dots functionalized with Anti-FLAG antibodies. This experiment is done under low ATP to slow down the myosin and allow the use of long enough exposure times to get a good photon count in every frame. Any sufficiently bright fluorescent label could be substituted in the following protocol. Lastly, recent effort of extending the application of FIONA to thick samples is reported. As a proof-of-principle, quantum dots were soaked in sol-gels and rabbit eye corneas and then imaged and localized using FIONA. For imaging, a 60X water immersion objective with NA=1.2 was used because this objective has a longer working distance than previously used 100X oil immersion objective. To compensate the loss in the magnification in the objective, an extra-magnification lens (3.3X or 4.0X) was inserted in the emission path. In addition, epi-fluorescence (not TIR) microscopy needs to be used to access deep regions in the thick samples. It is shown that quantum dots soaked deep in sol-gels and in rabbit eye corneas (Z > 200 µm) can be localized with 2-3 nm precision.
Access restricted. Please log in or start a trial to view this content.
Ethics Statement: The cornea tissue from rabbits was collected in accordance with the University of Illinois Institutional Animal Care and Use guidelines.
1. TIRFM Setup
NOTE: Wear laser-safety goggles all the time.
Figure 1. Optical configuration for total internal reflection fluorescence microscopy (TIRFM).
2. FIONA on Cy3-DNA
Figure 2. Sketch of a typical sample chamber. (a) Top view; (b) Side view from the right; (c) Side view from the front.
3. FIONA Applied to Quantify Motor (e.g., Myosin on Actin) Dynamics at Nanometer Scale
4. Thick Sample Preparation for FIONA
Access restricted. Please log in or start a trial to view this content.
A typical objective-type TIRFM setup is shown in Figure 3. First, surface-immobilized Cy3-DNA sample was imaged. A typical image is shown in Figure 4a. The image was taken with exposure time 0.5 sec, with EM gain = 50 and CCD sensitivity = 12.13 for the camera. The point-spread-function (PSF) of a single Cy3-DNA molecule is shown in Figure 4b (from the spot indicated by the arrow in Figure 4a), where the color-bar shows the scale of p...
Access restricted. Please log in or start a trial to view this content.
FIONA is a technique to localize the position of a fluorescent emitter (organic fluorophore or quantum dot) with nanometer precision and temporal resolution down to 1 msec4-8. When enough photons are collected, this technique allows to determine the position of a fluorescent emitter much more accurately than the diffraction limit (~200 nm) and thus this technique opens a way to observe what has not been seen with conventional/traditional optical microscopy4-8. Since its inventi...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
This work was supported by NIH Grants 068625, NSF Grants 1063188 and Center of the Physics of Living Cells 0822613. Special thanks go to Dr. Marina Marjanovic in Beckman Institute for Advanced Science and Technology for the gift of rabbit eyes.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Double-sided tape | 3M | ~75 µm thick | |
EMCCD camera | Andor Technology | DU-897E-CS0-#BV | |
Ultrasonic cleaner | Branson | 2510 | |
Fluorescence filter set | Chroma | 49016 | |
Actin polymerization buffer | Cytoskeleton | BSA02 | |
Biotin G-actin | Cytoskeleton | AB07 | |
G-actin | Cytoskeleton | AKL95 | |
General actin buffer | Cytoskeleton | BSA01 | |
Laser shutter (with driver) | Electro-Optical Products Corp. | SH-10-MP | |
IDL | Exelis Visual Information Solutions | ||
Neutravidin | Fisher Scientific | PI-31000 | |
Coverslip | Fisherbrand | 22X30-1.5 | 0.16-0.19 mm thick |
Microscope slide | Gold Seal Microslides | 30103X1 | 0.93-1.05 mm thick |
Plasma cleaner | Harrick Plasma | PDC-001 | |
Glass bottom dish | In Vitro Scientific | D35-20-1.5-N | |
Cy3-DNA oligos | Integrated DNA Technologies | 5'-Cy3/GCCTCGCTGCCGTCGCCA-3'Bio | |
Fluorescent beads | Invitrogen | T-7280 | |
Qdot 605-streptavidin | Invitrogen | Q10101MP | |
Qdot605 | Invitrogen | Q21301MP | |
Qdot705 | Invitrogen | Q22021MP | |
Qdot705 Antibody Conjugation Kit | Invitrogen | Q22061MP | |
MATLAB | MathWorks | ||
Optical table | Newport Corp | RS4000 Series | |
60X Objective | Nikon | Plan Apo VC 60x WI | |
100X Objective | Olympus | PlanApo 100X/1.45 Oil ∞/0.17 | |
60X Objective | Olympus | UPlanApo 60X/1.20W | |
Inverted microscope | Olympus | IX71/IX70/IX81 | |
Origin | OriginLab | ||
Anti-FLAG antibody | Sigma Aldrich | F7425-.2MG | |
ATP | Sigma Aldrich | A7699 | |
BME | Sigma Aldrich | 63689-25ML-F | |
BSA | Sigma Aldrich | A7906 | |
BSA-biotin | Sigma Aldrich | A8549-10MG | |
CK | Sigma Aldrich | C3755 | Creatine Phosphokinase from rabbit muscle |
CP | Sigma Aldrich | P1937 | Phosphocreatine di(tris) salt |
DTT | Sigma Aldrich | 43815 | DL-Dithiothreitol |
EGTA | Sigma Aldrich | E3889 | Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid |
HCl | Sigma Aldrich | 93363-500G | |
HEPES | Sigma Aldrich | H0887 | |
KCl | Sigma Aldrich | P9333 | |
MgCl2 | Sigma Aldrich | M1028 | |
NaCl | Sigma Aldrich | S7653 | |
PCA | Sigma Aldrich | 03930590 | Protocatechuic acid |
PCD | Sigma Aldrich | P8279 | Protocatechuate-3,4-dioxygenase |
TMOS | Sigma Aldrich | 341436-25G | Tetramethyl orthosilicate |
Tris-HCl | Sigma Aldrich | 93363 | |
Trolox | Sigma Aldrich | 238813 | 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid |
1” diameter broadband dielectric mirrors with mounts | Thorlabs | BB1-E02, KM100 | Quantity: 2 |
½” diameter posts | Thorlabs | TR4 | Quantity ≥ 6 |
10X beam expander | Thorlabs | BE10M-A | |
2” diameter f = 300 mm lens with mount | Thorlabs | LA1256-A, LMR2 | TIR lens |
Fluorescent alignment target | Thorlabs | VRC2SM1 | |
Laser safety goggles | Thorlabs | LG3 | |
ND filter(s) | Thorlabs | FW1AND | |
Optical beam profiler | Thorlabs | BP209-VIS | |
Post-mounted iris diaphragm | Thorlabs | ID25 | Quantity: 2 |
Shearing interferometer | Thorlabs | SI100 | |
XYZ translation stage, ½” travel | Thorlabs | T12XYZ | |
Laser | World Star Technologies | TECGL-30 | 532 nm, 30 mW |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone