JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here we describe a simple and widely accessible microscopy technique to acquire high-quality digital video of Drosophila adult and larval mutant phenotypes from a lateral perspective.

Streszczenie

Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming.

Wprowadzenie

The common fruit fly Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system1-3. Evolutionary conservation of structure and function of the nervous system with humans, as well as ease of genetic manipulation and a vast array of genetic tools makes Drosophila the premiere organism to model human neurodegenerative diseases4. Gene mutations that cause dysfunction of the nervous system often result in viable mutant larvae and adult Drosophila with impaired locomotion. Phenotypes observed in nervous system defective mutants include reduced rate of locomotion, aberrant coordination, and spastic movements in adults, as well as deficits in peristaltic contraction of the body wall musculature, and partial paralysis of larvae. These phenotypes have been exploited in the development of high-throughput genetic screens and locomotion assays of mutant larvae5,6 and adult7-10 Drosophila aimed at quantifying the locomotion impairment and identifying genes necessary for function of the nervous system. While these approaches are extremely useful for quantifying larval and adult locomotive behaviors, they fail to convey qualitative information about each specific aberrant behavior. For example, while mutant third instar larvae may exhibit altered locomotion parameters in a behavioral assay, it may be unclear if this is the result of alterations in rhythmic peristaltic contractions during the crawling cycle, general lack of coordination, or partial paralysis of the posterior body wall musculature. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of Drosophila adult and larval locomotive phenotypes from a lateral perspective. Digital video acquired from a lateral perspective allows the direct observation and analysis of subtle distinctions in locomotive behaviors from a more informative side-view orientation.

Protokół

1. The Stereo Microscope System

Note: Although this protocol is easily adaptable to virtually any stereo microscope system coupled to a digital camera with the capability of acquiring video, details are provided on the system used in our lab (Table of Materials/Equipment).

  1. Acquire digital video using a trinocular stereo microscope coupled to a commercial digital camera.
  2. In order to couple the commercial digital camera to the trinocular port of the stereo microscope, remove the ½x C-mount of the phototube port of the stereo microscope and replace it with a 1X C-mount.
  3. Mount a digital camera coupler (43 mm thread) to the 1X C-mount.
  4. Mount two step-down rings, 58 mm to 48 mm, and 48 mm to 43 mm, to the camera coupler to bridge the connection from the digital camera coupler to a lens adapter kit for the digital camera.
  5. Mount the digital camera to the lens adapter kit.
  6. Acquire video with the microscope magnification and optical zoom of the digital camera set for a combined magnification of approximately 12X (30 frames per sec, 640 x 480 pixels). Note: The magnification of the stereo microscope must be compensated in accordance with the newly reconfigured 1X C-mount of the trinocular port.

2. Imaging Drosophila Third Instar Larvae

  1. Tape a permanent marker to the black stage plate of a stereo microscope coupled to a digital camera so that the side of the marker cap occupies approximately ⅓ to ¼ of the vertical field of view observed in the camera LCD monitor. Use marker tops as the stage to perform larval imaging because they come in an assortment of colors that can be used to color code and differentiate the genotypes of larvae being imaged.
  2. Demarcate the field of view observed in the digital camera LCD monitor on the surface of the marker top with a fine point marker.
  3. Select a third instar larva to image. The criteria for selecting third instar larvae was body length, emergence from the food source during the larval phase of the life cycle, the presence of anterior and posterior spiracles, and the structure of the mandibular hooks of the mouth apparatus11. Ensure the larva is clean by washing it thoroughly in water.
  4. Illuminate the permanent marker top stage from above with light from a fiber optic lighting system. Adjust the angle of incident light to provide optimal illumination.
  5. Focus the microscope on the edge of the permanent marker top. Begin acquiring digital video.
  6. Place the larva on the side of the marker cap approximately 75° away from the vertical axis, just outside the field of view, with the anterior of the larva facing towards the field of view (Figure 1). Note: Placement of the larva on the side of the marker cap allows the camera to record movement of the larva from a lateral perspective. It helps to keep the larva moist with water so they don't fall off the side of the marker cap. Care must be exercised, however, to not use too much water as excessive amounts will adhere to the larva as it crawls across the field.
  7. Gently poke and prod the larva with a small paintbrush to coerce it to crawl across the field of view. Be patient as the larvae rarely cooperate and often have to be returned to the starting point many times before they crawl straight across the field.
  8. Record approximately 10-15 min of uninterrupted digital video footage and crop and remove all unnecessary footage post-acquisition with digital video editing software.

3. Imaging Adult Drosophila

  1. Place a single adult Drosophila in a disposable 1.5 ml spectroscopic polystyrene cuvette.
    Note: CO2 anaesthetization of adult Drosophila immediately before a behavioral analysis protocol can compromise results12. It is recommended that adult Drosophila be given a 24-hr period to recover from CO2 anaesthetization before performing in a behavioral test13.
  2. Plug the end of the cuvette with a small cotton ball. Ensure the cotton ball is packed tight enough to occupy the large cap space and confines the fly to the reduced volume compartment of the cuvette.
  3. Place the cuvette on the white stage plate of a stereo microscope and properly align the reduced volume compartment of the cuvette with the field of view observed in the digital camera LCD monitor.
  4. Illuminate the cuvette from above with light from a fiber optic lighting system. Adjust the angle of incident light to provide optimal illumination.
  5. Focus the microscope and begin acquiring digital video.
  6. Record approximately 30-45 min of uninterrupted digital video footage and crop and remove all unnecessary footage post-acquisition with digital video editing software.

Wyniki

We have successfully used this technique to acquire and quantify the larval behavioral phenotype associated with loss of function of the stathmin gene (Figure 2)14. The stathmin gene encodes a microtubule regulatory protein that partitions tubulin dimers from pools of soluble tubulin, and binds microtubules and promotes their disassembly15,16. Stathmin function is required to maintain the integrity of microtubules in the axons of peripheral nerves14. Dis...

Dyskusje

Drosophila melanogaster’s strength as a model system for studying nervous system function stems largely from the convergence of the powerful genetic tools available and the broad array of robust behavioral assays developed. Here we present a simple and widely accessible microscopy technique for acquiring high-quality digital video of Drosophila adult and larval locomotive phenotypes from a lateral perspective. We have successfully used this approach to characterize and quantify the severity of pos...

Ujawnienia

The authors have declared that no competing interests exist.

Podziękowania

The authors wish to acknowledge Alexandra Opie for technical assistance and support, James Barton for providing video narration, and Ramona Flatz and Joellen Sweeney for appearing in the accompanying video. This work was supported by the M.J. Murdock Charitable Trust (Grant No. 2012205 to JED).

Materiały

NameCompanyCatalog NumberComments
Trinocular Stereozoom MicroscopeOlympus CorporationSZ6145TR½ C-mount was removed and replaced with 1X C-mount
1X C-mountLeeds Precision InstrumentsLSZ-1XCMT2
Digital Camera Coupler (43 mm thread)Qioptiq Imaging Solutions25-70-10-02
58 mm to 48 mm Step Down RingB&H VideoGBSDR5848
48 mm to 43 mm Step Down RingB&H VideoGBSDR4843
Lensmate Adapter Kit for Canon G10LensMateOnline.com
Canon PowerShot G10 Digital CameraCanon U.S.A., Inc.
1.5 ml Spectroscopic Polysterene CuvetteDenville ScientificU8650-4

Odniesienia

  1. Zhang, B., Freeman, M. R., Waddell, S. . Drosophila neurobiology: a laboratory manual. , (2010).
  2. Frank, C. A., et al. New approaches for studying synaptic development, function, and plasticity using Drosophila as a model system. J Neurosci. 33, 17560-17568 (2013).
  3. Mudher, A., Newman, T. . Drosophila : a toolbox for the study of neurodegenerative disease. , (2008).
  4. Bilen, J., Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet. 39, 153-171 (2005).
  5. Jakubowski, B. R., Longoria, R. A., Shubeita, G. T. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly (Austin). 6, 303-308 (2012).
  6. Caldwell, J. C., Miller, M. M., Wing, S., Soll, D. R., Eberl, D. F. Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants). Proc Natl Acad Sci U S A. 100, 16053-16058 (2003).
  7. Jahn, T. R., et al. Detection of early locomotor abnormalities in a Drosophila model of Alzheimer's disease. J Neurosci Methods. 197, 186-189 (2011).
  8. Donelson, N. C., et al. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the "tracker" program. PLoS ONE. 7, e37250 (2012).
  9. Slawson, J. B., Kim, E. Z., Griffith, L. C. High-resolution video tracking of locomotion in adult Drosophila melanogaster. J Vis Exp. (24), (2009).
  10. Colomb, J., Reiter, L., Blaszkiewicz, J., Wessnitzer, J., Brembs, B. Open source tracking and analysis of adult Drosophila locomotion in Buridan's paradigm with and without visual targets. PLoS ONE. 7, e42247 (2012).
  11. Demerec, M. . Biology of Drosophila. , (1965).
  12. Barron, A. B. Anaesthetising Drosophila for behavioural studies. J Insect Physiol. 46, 439-442 (2000).
  13. Greenspan, R. J. . Fly pushing : the theory and practice of Drosophila genetics.. , (2004).
  14. Duncan, J. E., Lytle, N. K., Zuniga, A., Goldstein, L. S. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila. 8, e683244 (2013).
  15. Belmont, L. D., Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell. 84, 623-631 (1996).
  16. Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol. 14, 18-24 (2002).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Keywords DrosophilaDrosophila MelanogasterLarval BehaviorAdult BehaviorDigital VideoLateral PerspectiveMicroscopyLocomotionGene MutationsNervous SystemCrawlingGroomingPhenotypes

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone