Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here we describe a simple and widely accessible microscopy technique to acquire high-quality digital video of Drosophila adult and larval mutant phenotypes from a lateral perspective.
Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming.
The common fruit fly Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system1-3. Evolutionary conservation of structure and function of the nervous system with humans, as well as ease of genetic manipulation and a vast array of genetic tools makes Drosophila the premiere organism to model human neurodegenerative diseases4. Gene mutations that cause dysfunction of the nervous system often result in viable mutant larvae and adult Drosophila with impaired locomotion. Phenotypes observed in nervous system defective mutants include reduced rate of locomotion, aberrant coordination, and spastic movements in adults, as well as deficits in peristaltic contraction of the body wall musculature, and partial paralysis of larvae. These phenotypes have been exploited in the development of high-throughput genetic screens and locomotion assays of mutant larvae5,6 and adult7-10 Drosophila aimed at quantifying the locomotion impairment and identifying genes necessary for function of the nervous system. While these approaches are extremely useful for quantifying larval and adult locomotive behaviors, they fail to convey qualitative information about each specific aberrant behavior. For example, while mutant third instar larvae may exhibit altered locomotion parameters in a behavioral assay, it may be unclear if this is the result of alterations in rhythmic peristaltic contractions during the crawling cycle, general lack of coordination, or partial paralysis of the posterior body wall musculature. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of Drosophila adult and larval locomotive phenotypes from a lateral perspective. Digital video acquired from a lateral perspective allows the direct observation and analysis of subtle distinctions in locomotive behaviors from a more informative side-view orientation.
1. The Stereo Microscope System
Note: Although this protocol is easily adaptable to virtually any stereo microscope system coupled to a digital camera with the capability of acquiring video, details are provided on the system used in our lab (Table of Materials/Equipment).
2. Imaging Drosophila Third Instar Larvae
3. Imaging Adult Drosophila
We have successfully used this technique to acquire and quantify the larval behavioral phenotype associated with loss of function of the stathmin gene (Figure 2)14. The stathmin gene encodes a microtubule regulatory protein that partitions tubulin dimers from pools of soluble tubulin, and binds microtubules and promotes their disassembly15,16. Stathmin function is required to maintain the integrity of microtubules in the axons of peripheral nerves14. Dis...
Drosophila melanogaster’s strength as a model system for studying nervous system function stems largely from the convergence of the powerful genetic tools available and the broad array of robust behavioral assays developed. Here we present a simple and widely accessible microscopy technique for acquiring high-quality digital video of Drosophila adult and larval locomotive phenotypes from a lateral perspective. We have successfully used this approach to characterize and quantify the severity of pos...
The authors have declared that no competing interests exist.
The authors wish to acknowledge Alexandra Opie for technical assistance and support, James Barton for providing video narration, and Ramona Flatz and Joellen Sweeney for appearing in the accompanying video. This work was supported by the M.J. Murdock Charitable Trust (Grant No. 2012205 to JED).
Name | Company | Catalog Number | Comments |
Trinocular Stereozoom Microscope | Olympus Corporation | SZ6145TR | ½ C-mount was removed and replaced with 1X C-mount |
1X C-mount | Leeds Precision Instruments | LSZ-1XCMT2 | |
Digital Camera Coupler (43 mm thread) | Qioptiq Imaging Solutions | 25-70-10-02 | |
58 mm to 48 mm Step Down Ring | B&H Video | GBSDR5848 | |
48 mm to 43 mm Step Down Ring | B&H Video | GBSDR4843 | |
Lensmate Adapter Kit for Canon G10 | LensMateOnline.com | ||
Canon PowerShot G10 Digital Camera | Canon U.S.A., Inc. | ||
1.5 ml Spectroscopic Polysterene Cuvette | Denville Scientific | U8650-4 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone