Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A robust and flexible approach to confirm herbicide resistance in weed populations is presented. This protocol allows the herbicide resistance levels to be inferred and applied to a wide range of weed species and herbicides with minor adaptations.
Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs.
Herbicides are the most extensively used weed control measure, accounting for up to 50% of the global plant protection market 1. They are relatively cheap tools, avoid labor-intensive and time-consuming soil cultivation practices, and ultimately result in cost-effective, safe and profitable food production 2. However, the great phenological and genetic variability present in many weed species, together with an over-reliance on herbicide use, frequently results in the selection of herbicide-resistant weed populations. The introduction of selective herbicides with a very specific metabolic target 3-5 has dramatically increased the number of resistance cases over the years. To date, 240 weed species (140 dicots and 100 monocots) worldwide have evolved resistance to different herbicide Sites of Action (SoA) 4. This is a major concern for weed management and more in general for sustainable crop production.
Early detection of resistance, based on reliable tests, frequently performed in a greenhouse, is a key step to manage herbicide resistant weeds. Different approaches have been developed according to the aims, required level of accuracy, time and resources available, as well as the weed species considered 6-12. However, when confirmation of the resistance status of a new weed biotype is required (i.e., a group of individuals that share several physiological characteristics, including the ability to survive one or more herbicides belonging to a particular group used at a dose that would normally control them), a robust whole plant bioassay needs to be performed in a controlled environment 4, 11.
A biotype is seldom resistant to just one herbicide. Each biotype is therefore characterized by a certain resistance pattern, i.e., number and type of SoA of the herbicides it is resistant to, and by a given resistance level to each herbicide 13. The early and reliable determination of the pattern of cross or multiple resistance 5, 14 is important for field resistance management.
It is worth mentioning that herbicide resistance has nothing to do with the natural tolerance that some weed species exhibit towards some herbicides, e.g., dicot species vs. ACCase-inhibiting herbicides, monocot species vs. 2,4-D, Equisetum arvense vs. glyphosate.
This paper presents a robust approach for testing putative herbicide resistant biotypes sampled in fields where poor control by herbicide(s) had been reported. Relevant variants to the standard protocols in relation to the weed species involved are presented. The advantages over alternative techniques/protocols based on either whole plant bioassays using only one herbicide dose 15,or treating seeds in Petri dishes 8 are related to the higher reliability and the possibility of inferring the resistance level because of the inclusion of two herbicide doses in the experiments. However, for routine resistance testing, the same methods can be applied at only one herbicide dose, so reducing the costs.
As well as allowing confirmation of the resistance status, the information obtained can be used for both optimizing the following research steps and/or devising sound resistance management strategies.
1. Seed Sampling and Storage
2. Seed Dormancy Breaking
NOTE: Seed dormancy provides a flexible and efficient mechanism that enables weeds to adapt and persist in agro-ecosystems. To break dormancy and allow seed germination, different protocols have to be used depending on weed species, i.e., the type of dormancy 16.
There are three main ways to remove dormancy:
3. Seed Germination
4. Seedling Transplanting and Growth
5. Herbicide Treatments
6. Collection and Analysis of the Data
To assess the resistance status of a putative resistant population, it is fundamental to include a susceptible check in the assay in order to verify the herbicide efficacy. The results of a screening test conducted on P. rhoeas populations, a weed infesting wheat fields, are reported in Figure 2, where the efficacy of four post-emergence herbicides on a susceptible check (09-36) and on the suspected resistant one (10-91) are presented. Population 09-36 was completely controlled by the ALS inhibi...
Several steps within the protocols are critical for a successful assessment of herbicide resistance in a population: 1) seeds should be collected when mature from plants that had survived the herbicide treatment(s). Maturation of the seeds on the mother plant is crucial to avoid difficulties in seed germination later; 2) the proper storage of seeds is recommended to avoid proliferation of molds that would prevent germination; 3) seedlings should be treated at the right growth stage, as reported on the label of the herbic...
The authors declare that they have no competing financial interests.
The research was supported by the National Research Council (CNR) of Italy. The authors thank GIRE members for collecting seed samples and are grateful to Alison Garside for revising the English.
Name | Company | Catalog Number | Comments |
Paper bags | Celcar SAS | ||
Plastic dishes | ISI plast S.p.A. | SO600 | Transparent plastic |
Sulfuric acid 95-98% | Sigma-Aldrich | 320501 | |
Non-woven fabric | Carretta Tessitura | Art.TNT17 | Weight 17 g m-2 |
Chloroform >99.5% | Sigma-Aldrich | C2432 | |
Agar | Sigma-Aldrich | A1296 | |
Potassium nitrate >99.0% | Sigma-Aldrich | P8394 | |
Plastic containers | Giganplast | 1875/M | 600 x 400 x 110 mm |
Plastic trays | Piber plast | G1210A | 325 x 265 x 95 mm |
Polystyrene trays | Plastisavio | S24 | 537 x 328 x 72 mm, 24 round cells (6x4) |
Copper sulfate | Sigma-Aldrich | 451657 | |
Agriperlite | Blu Agroingross sas | AGRI100 | |
Peat | Blu Agroingross sas | TORBA250 | |
Germination cabinet | KW | W87R | |
Nozzles | Teejet | XR11002-VK, TP11001-VH | The second type of nozzles are used only for glyphosate |
Barcode generator | Toshiba TEC | SX4 | |
Labels with barcode | Felga | TT20200 | Stick-in labels with rounded corners |
Barcode reader | Cipherlab | 8300-L | Portable data terminal |
Bench sprayer | Built in house | ||
Herbicides included in the results: | |||
Commercial product | Active ingredient | Company | Comments |
Altorex | imazamox | BASF | |
Azimut | florasulam | Dow AgroSciences | |
Biopower | Bayer Crop Science | Surfact to be used with Hussar WG | |
Dash | BASF | Surfact to be used with Altorex | |
Granstar | tribenuron-methyl | Dupont | |
Gulliver | azimsulfuron | Dupont | |
Hussar WG | iodosulfuron | Bayer Crop Science | |
Nominee | bispyribac-Na | Bayer Crop Science | |
Roundup | glyphosate | Monsanto | |
Trend | Dupont | Surfact to be used with Granstar and Gulliver | |
Viper | penoxsulam | Dow AgroSciences | |
Weedone LV4 | 2,4-D | Isagro |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone