Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We offered a method to directly synthesize high c-axis (0002) ZnO thin film by plasma enhanced chemical vapor deposition. The as-synthesized ZnO thin film combined with Pt interdigitated electrode was used as sensing layer for ultraviolet photodetector, showing a high performance through a combination of its good responsivity and reliability.
In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance.
For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.
ZnO is a promising wide-band-gap functional semiconductor material due to its unique properties such as high chemical stability, low cost, non-toxicity, low power threshold for optical pumping, wide direct band gap (3.37 eV) at RT and large exciton binding energy of ~60 meV 1-2. Recently, ZnO thin films have been employed in many application fields including transparent conductive oxide (TCO) films, blue light emitting device, field-effect transistors, and gas sensor 3-6. On the other hand, ZnO is a candidate material to replace indium tin oxide (ITO) owing to indium and tin being rare and expensive. Moreover, ZnO possesses high optical tran....
Access restricted. Please log in or start a trial to view this content.
1. Substrate Preparation and Cleaning
2. DEZn Preparation and Preservation
Note: Diethylzinc (C2H5)2Zn, also called DEZn, is a highly pyrophoric organozinc compound consisting of a zinc cen....
Access restricted. Please log in or start a trial to view this content.
The ZnO (0002) thin films with high c-axis preferred orientation have been successfully synthesized onto the Si substrates by using the PECVD system. The carbon dioxide (CO2) and the diethylzinc (DEZn) were used as oxygen and zinc precursors, respectively. The crystal structure of ZnO thin films was characterized by X-ray diffraction (Figure 4), indicating that the ZnO thin film synthesized at 400 oC with the strongest (0002) diffraction peak. When the synthesized temperatu.......
Access restricted. Please log in or start a trial to view this content.
Critical steps and modifications
In step 1, the substrates should be thoroughly cleaned and steps 1.3 to 1.5 followed to make sure that there is no grease or organic and inorganic contaminations on the substrates. Any grease or organic and inorganic contaminations on the substrate surface will significantly reduce the adhesion of the film.
Step 2 is the most important procedure before the ZnO film preparation process. DEZn is very toxic and violently reacts with wat.......
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
This work was financially supported of by the Ministry of Science and Technology and National Science Council of Republic of China (contract nos. NSC 101-2221-E-027-042 and NSC 101-2622-E-027-003-CC2). D. H. Wei thanks the National Taipei University of Technology (TAIPEI TECH) for the Dr. Shechtman Prize Award.
....Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
RF power supply | ADVANCED ENERGY | RFX-600 | |
Butterfly valve | MKS | 253B-1-40-1 | |
Mass flow controller | PROTEC INSTRUMENTS | PC-540 | |
Pressure controller | MKS | 600 series | |
Heater | UPGRADE INSTRUMENT CO. | UI-TC 3001 | |
Sputter gun | AJA INTERNATIONAL | A320-HA | |
DEZn 1.5M | ACROS ORGANIC USA, New Jersey | also called Diethylzinc (C2H5)2Zn | |
Spin coater | SWIENCO | PW - 490 | |
I-V measurement | Keithley | Model: 2400 | |
Photocondutive measurement | Home-built | ||
UV light sourse | Panasonic | ANUJ 6160 | |
Mask aligner | Karl Suss | MJB4 | |
Photoresist | Shipley a Rohm & Haas company | S1813 | |
Developer | Shipley a Rohm & Haas company | MF319 | |
Silicon wafer | E-Light Technology Inc | 12/0801 | |
Glass substrate | CORNING | 1737 | P-type / Boron |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone