Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This video protocol describes a sensitive, reliable, and quick method for evaluating the neuromuscular deficits in a transgenic mouse model of amyotrophic lateral sclerosis.
The SOD1-G93A transgenic mouse is the most widely used animal model of amyotrophic lateral sclerosis (ALS). At ALS TDI we developed a phenotypic screening protocol, demonstrated in video herein, which reliably assesses the neuromuscular function of SOD1-G93A mice in a quick manner. This protocol encompasses a simple neurological scoring system (NeuroScore) designed to assess hindlimb function. NeuroScore is focused on hindlimb function because hindlimb deficits are the earliest reported neurological sign of disease in SOD1-G93A mice. The protocol developed by ALS TDI provides an unbiased assessment of onset of paresis (slight or partial paralysis), progression and severity of paralysis and it is sensitive enough to identify drug-induced changes in disease progression. In this report, the combination of a detailed manuscript with video minimizes scoring ambiguities and inter-experimenter variability thus allowing for the protocol to be adopted by other laboratories and enabling comparisons between studies taking place at different settings. We believe that this video protocol can serve as an excellent training tool for present and future ALS researchers.
Ever since its development in the mid 1990’s the SOD1-G93A transgenic mouse model has been the most widely used animal model of amyotrophic lateral sclerosis (ALS) 1. This transgenic mouse model was genetically engineered to overexpress a mutant form of the human Cu/Zn superoxide dismutase 1(SOD1) gene harboring the ALS-associated glycine to alanine mutation at amino acid 93 (G93A). The G93A mutation is one of many mutations in the SOD1 gene that collectively make-up approximately one fifth of familial ALS cases 2.
The SOD1-G93A model has become a workhorse of ALS drug development research because in addition to its obvious genetic link to ALS, it recapitulates many of the pathological features of ALS in humans such as motor neuron loss, progressive muscle weakness and atrophy, with eventual paralysis and death 3. Though, as is often the case with transgenic animal models, there is an inherent biological variability associated with SOD1-G93A mice. Scott et al. have determined that cohorts of at least 24 litter-matched gender-balanced mice are needed in drug-efficacy study designs in order to overcome the noise created by the biological variability 4. The large number of animals required in these studies in combination with the aggressive disease progression and the need for daily monitoring prohibits the use of elaborate, time-consuming and potentially stressful techniques for measuring neuromuscular strength and function (e.g., electromyography, grip strength, rotorod, etc.). Instead, it highlights the need for an in vivo screening tool that reliably assesses the neuromuscular function of SOD1-G93A mice in a quick manner.
At ALS TDI a protocol was developed that allows for the reliable assessment of the neuromuscular function of SOD1-G93A mice in less than 30 sec per mouse on average. This protocol encompasses daily assessment of hindlimb function using a simple neurological scoring system (NeuroScore) which is described in this report in press and in video. NeuroScore is focused on hindlimb function because hindlimb deficits are the earliest reported neurological sign of disease in SOD1-G93A mice 5,6. Further, the protocol developed by ALS TDI provides an unbiased assessment of onset of paresis (slight or partial paralysis), progression and severity of paralysis and it is sensitive enough to identify drug-induced changes in disease progression.
All experiments are conducted in accordance with the protocols described by the National Institutes of Health Guide for the Care and Use of Animals and were approved by ALS TDI’s institutional animal care and use committee (IACUC).
1. Animals, Housing, and Study Design
Note: The SOD1-G93A mouse colony was derived from the high copy B6SJLTgN(SOD1G93A)1Gur strain originally produced by Gurney et al. 7. The colony is currently being maintained by crossing transgenic C57BL/6-SJL males with wild-type C57BL/6-SJL F1 females. The F1 animals are generated by crossing SJL males with B6 females. Mice are shipped to ALS TDI weekly at 35–45 days of age.
2. Body Weight
3. Neurological Scoring System (NeuroScore)
4. Data Entry and Analysis
The neurological score data for 90 male and 94 female non-treated SOD1-G93A mice studied at ALS TDI during 2014 were evaluated. The results show that male mice typically have a more aggressive disease progression than female mice, as evidenced by a greater proportion of their lifespan at NS 1 compared to females. NS 2 and NS 3 occur with virtually equal frequency across genders. NS 0 was excluded from the analysis because it is considered a “normal” phenotype. NS 4 was also excluded because by definition it c...
In this report, we describe a quick and simple video protocol which, if properly applied, is capable of reliably assessing the disease progression in SOD1-G93A mice and identifying drug-induced changes. While different groups have developed phenotypic scoring systems for SOD1-G93A mice 8-10, they often do not provide sufficient details on the procedure and are inadequate for replication. As a result, scoring systems are rarely used outside the specific group that develops them. In this report, the combination ...
The authors have nothing to disclose.
We would like to acknowledge Beth Levine for critically reviewing the manuscript, Valerie Tassinari for developing the genotyping protocol, and Matt Ferola and Carlos Maya for their exceptional animal care.
Name | Company | Catalog Number | Comments |
B6SJLTgN(SOD1G93A)1Gur strain | The Jackson Laboratory, Bar Harbor, ME | 002726 | Strain of mice used in this study |
Breeders | Biomedical Research Models, Inc., Worcester, MA | Colony maintainance | |
Scale | Navigator OHAUS, Parsippany, NJ | Model N14120 | Used to weigh mice |
Nutra-GelH | Bio-Serv, Flemington, NJ | #S4798 | Wet food provided to sick mice |
Irradiated Lab Animal Diet | Harlan, Indianapolis, IN | 2918-111914M | Chow diet |
Lab-grade Sani-chips | Harlan Teklad, Indianapolis, IN | 7090 | Bedding |
JMPH | SAS Institute, Inc., SAS Campus Drive, Cary, NC | v10.0.2 | Statistical software |
Microsoft Excel | Microsoft, One Microsoft Way, Redmond, WA | Excel 2013 (v 15.0) | Spreadsheet software |
GraphPad Prism 5 | GraphPad software Inc., La Jolla, CA | v5.4 | Graphing software |
Mouse Huts | Bio-Serv, Flemington, NJ | K3272 | For environmental enrichment |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone