Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here we present a Golgi-Cox protocol in extensive detail. This reliable tissue stain method allows for a high-quality assessment of the cytoarchitecture in the hippocampus, and throughout the entire brain, with minimal troubleshooting.
Dendritic spines are the protuberances from the neuronal dendritic shafts that contain excitatory synapses. The morphological and branching variations of the neuronal dendrites within the hippocampus are implicated in cognition and memory formation. There are several approaches to Golgi staining, all of which have been useful for determining the morphological characteristics of dendritic arbors and produce a clear background. The present Golgi-Cox method, (a slight variation of the protocol that is provided with a commercial Golgi staining kit), was designed to assess how a relatively low dose of the chemotherapeutic drug 5-flurouracil (5-Fu) would affect dendritic morphology, the number of spines, and the complexity of arborization within the hippocampus. The 5-Fu significantly modulated the dendritic complexity and decreased the spine density throughout the hippocampus in a region-specific manner. The data presented show that the Golgi staining method effectively stained the mature neurons in the CA1, the CA3, and the dentate gyrus (DG) of the hippocampus. This protocol reports the details for each step so that other researchers can reliably stain tissue throughout the brain with high quality results and minimal troubleshooting.
Dendrites are the largest portion of neurons that receive and process presynaptic input1. Their dendritic processes have a complex geometry, where the proximal branches have a larger diameter than the distal branches. As dendrites develop, they form several connections with other neurons in a process referred to as dendritic arborization. The extent and pattern of this branching determines the amount of synaptic inputs that a dendrite can adequately process2.
Dendritic arborization is a necessary process for activity-dependent plasticity and proper development of neuronal circuits. Extension, retraction, branching, and synaptogenesis are intricate processes that include intrinsic genetic programs and influences from extrinsic factors. The morphological and branching variations of the neuronal dendrites within the hippocampus are implicated in cognition and memory formation3,4. The alterations in dendritic complexity are associated with pathophysiological and behavioral changes5. Abnormalities are related to several disease states, including Fragile X Syndrome and Down Syndrome6.
Dendritic spines are the specialized subcellular compartments of the dendritic arbors that receive excitatory input within the central nervous system. There are three morphological classes of dendritic spines, with the name of each class based on their size and shape: 1) mushroom spines, which have complex postsynaptic densities with more glutamate receptors than other spines7; 2) stubby spines, which lack a stem; and 3) thin spines, which consist of a protracted, narrow stem and a globular head8. The dendritic spine volume is used in part to define them, with thin spines generally smaller (0.01 µm3) compared to mushroom spines (0.8 µm3)9,10. The spines stabilize with maturation. For example, the thin spines either retract after a few days or develop into mushroom spines. Alternatively, the mushroom spines are relatively stable and can survive for an extended period.The strength of the neuronal connections is thought to be based on the number of spines and/or their volume11,12,13.
The classical Golgi staining method and its more modern variations have all been useful for examining the dendritic spine morphology and density. One unique aspect of the Golgi staining is that it randomly stains about 5% of the total neurons, which allows for the tracing of individual neurons14,15. Although the exact mechanism in which the Golgi method stains individual neurons is still unknown, the principle of the method is based on the crystallization of silver chromate (Ag2CrO4)16,17. There are three main types of the Golgi method: the rapid Golgi, the Golgi-Cox, and the Golgi-Kopsch18,19. All three methods start with an initial incubation phase in chromium salts for several days to months, but there are certain key differences between them. The rapid Golgi uses osmium tetroxide in the first step, whereas the Golgi-Kopsch includes paraformaldehyde. The staining in both the rapid-Golgi and the Golgi-Kopsch is followed by an incubation in a 1-2% silver nitrate solution for about 7 days. The Golgi-Cox method uses mercuric chloride and potassium dichromate instead of silver nitrate and has an impregnation time of 2-4 weeks. The tissues are then sectioned and quickly placed in a diluted ammonia solution, followed by a photographic fixer to remove salts. Of the three types, the Golgi-Cox method is thought to be the best at staining the dendritic arbors without much background interference, in part, because the crystal artifacts do not occur on the surface of the tissue (unlike in the rapid Golgi method)17,20,21.
The present method is a slight variation of the protocol provided with a commercial Golgi staining kit, and was designed to assess how a relatively low dose of the 5-Fu would affect the dendritic morphological characteristics and the spine density. Any data acquired could provide further insight into how chemotherapeutic treatment affects the neuronal circuitry.
Access restricted. Please log in or start a trial to view this content.
Experiments were conducted in accordance with the ethical standards approved by the Institutional Animal Care and Use Committee at UAMS.
1. Animals and 5-Fu Injection Paradigm
2. Euthanasia Procedure and Brain Extraction
3. Golgi Staining and Tissue Preparation
4. Sectioning
5. Post-staining
6. Mounting, Cleaning, and Covering
7. Acquire Image Stack
8. Neuronal Tracing
9. Analysis
Access restricted. Please log in or start a trial to view this content.
The effects of the 5-Fu treatment on the dendritic arborization and complexity in the hippocampus of Golgi-stained brain sections were quantified and traced using a commercially available imaging software. After tracing, the dendritic arborization, the spine density, and the spine morphology were analyzed using Sholl analysis and the dendritic complexity index (DCI). Sholl analysis is a quantitative analytical method that can be used to determine the dendritic arbor morphology
Access restricted. Please log in or start a trial to view this content.
Compared to more modern techniques, the Golgi-Cox method has several advantages that make it the preferred method for examining spine morphology: 1) The staining can be used for essentially any tissue, 2) A basic light microscope setup is all that is needed to acquire Golgi-based images, 3) The Golgi-Cox imaging is faster than confocal imaging, and 4) Golgi stained sections are viable for several months to years longer than samples that are fluorescently-labeled. Even with these advantages, the Golgi-Cox method still has...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
This work was supported by a pilot grant under NIH P20 GM109005 (A.R.A.) and by the Center for Translational Neuroscience IDeA program award P30 GM110702.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
superGolgi Kit | Bioenno Lifesciences | 30100 | Contains hazardous materials. |
PBS 10x powder concentrate | Fisher | BP665-1 | |
Triton X-100 | Sigma | 9002-93-1 | |
Permount | Fisher | SP 15-100 | |
Slide cover | Fisher | 12-546-14 | |
7 mL Transfer pipette | Globe Scientific | 135030 | |
10 mL Falcon tubes | BD Biosciences | 352099 | |
Foil | Fisher | 01-213-105 | |
12-well plate | BD Biosciences | 353043 | |
200 proof Ethanol | Pharmco-AAPER | 111000200 | |
Xylene | Acros Organics | 1330-20-7 | Hazardous. |
Permabond 200 | Permabond LLC | GF2492 | |
25 mL serological pipette | Sigma | SIAL1489 | |
Parafilm | Midsci | HS234526C | |
Vibratome | World Precision Instruments | NVSLM1 | |
C57Bl/6 Male Mice | The Jackson Laboratory | 000664 | |
Axio Imager 2 | ZEISS | Multiple components, see website for details. | |
AxioCam MRc Camera | ZEISS | 426508-9902-000 | |
Staining Dish , Green | Tissue-Tek | 62541-12 | |
Staining Dish Set | Electron Microscopy Sciences | 70312-20 | |
Motorized Pipet Filler | Fisher | 03-692-168 | |
Neurolucida | mbf Bioscience | ||
Neurolucida Explorer | mbf Bioscience | ||
Prism | GraphPad |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone