Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Traditional slab gel electrophoresis (SGE) experiments require a complicated apparatus and high chemical consumption. This work presents a protocol that describes a low-cost method to separate DNA fragments within a short timeframe.
Slab gel electrophoresis (SGE) is the most common method for the separation of DNA fragments; thus, it is broadly applied to the field of biology and others. However, the traditional SGE protocol is quite tedious, and the experiment takes a long time. Moreover, the chemical consumption in SGE experiments is very high. This work proposes a simple method for the separation of DNA fragments based on an SGE chip. The chip is made by an engraving machine. Two plastic sheets are used for the excitation and emission wavelengths of the optical signal. The fluorescence signal of the DNA bands is collected by smartphone. To validate this method, 50, 100, and 1,000 bp DNA ladders were separated. The results demonstrate that a DNA ladder smaller than 5,000 bp can be resolved within 12 min and with high resolution when using this method, indicating that it is an ideal substitute for the traditional SGE method.
Slab gel electrophoresis (SGE) is the most effective method for DNA fragment separation1,2,3,4,5 and thus it is deemed a versatile tool in biochemical and biological analyses6,7,8. However, many experiments indicate that SGE is restricted by the following four problems: (1) the separations take many hours, and even days; (2) the chemical consumption is very high; (3) it requires a complicated apparatus (e.g., 2D electrophoresis cell, electrophoresis power supply, and gel imaging system); (4) the gel imaging system can only observe the separated DNA fragments when the experiment is finished. Furthermore, ethidium bromide (EtBr), which is commonly used in SGE9,10, is mutagenic and cancerogenic11,12. Thus, gloves should always be worn when handing gels containing EtBr.
Capillary electrophoresis (CE) has numerous advantages13,14,15,16,17 compared to SGE, such as automatic operation, short separation time, and lower consumption. However, the CE instrument is quite expensive. Therefore, to overcome those limitations, a system has been developed (Figure 1) for the separation of DNA. Such a system can not only greatly reduce the chemical consumption and save on SGE experiment time (<8 min), but it can also perform real-time tracking of the DNA separation process in the agarose gel by smartphone. By following the procedures described in this protocol, students should be able to design and fabricate the SGE chip, prepare the agarose gel in the chip, set up a simple SGE system with a smartphone, and record the DNA migration process in the agarose gel.
1. Basic Design of the SGE Chip
2. Preparation of the Agarose Gel
3. Running the Electrophoresis in the SGE Chip
Figure 4, Figure 5, and Figure 6 represent a typical result after the gel electrophoresis of 50, 100, and 1,000 bp DNA ladders. After the experiment, the DNA fragments were well-separated. Furthermore, the same samples were separated in the 4 channels of the SGE chip, showing that DNA fragments of the same size move the same distance in each experiment.
The separation performance of the DNA ladder can be ...
Agarose gel electrophoresis is widely employed for the separation of DNA, RNA, and protein. This work proposes a new method to replace the traditional gel electrophoresis protocol. Results demonstrate that 50, 100, and 1,000 bp DNA ladders can be separated well in such a small assembled device. The great advantage of this method is that not only can it separate the nucleic acids with little chemical consumption, but it can also record the separation process. Although the DNA fragments looks wide in F...
No conflicts of interest are declared.
We gratefully acknowledge support from National Natural Science Foundation of China (No. 21205078) and the Research Fund for the Doctoral Program of Higher Education of China (No.20123120110002). This work was partially supported by the National Key Research and Development Program of China (2016YFB1102303), the National Basic Research Program of China (973Program; 2015CB352001), and the National Natural Science Foundation of China (61378060).
Name | Company | Catalog Number | Comments |
10×TBE | Beijing Solarbio Science & Technology Co., Ltd. | T1051 | |
50 bp DNA ladder | Takara Bio Inc. | 3421A | |
100 bp DNA ladder | Takara Bio Inc. | 3422A | |
1 kbp DNA ladder | Takara Bio Inc. | 3426A | |
SYBR GREEN | Takara Bio Inc. | 5760A | |
Agarose | Sigma-Aldrich Corporate | V900510 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone