Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We provide a protocol for imaging intracellular pH of an epithelial stem cell lineage in live Drosophila ovarian tissue. We describe methods to generate transgenic flies expressing a pH biosensor, mCherry::pHluorin, image the biosensor using quantitative fluorescence imaging, generate standard curves, and convert fluorescence intensity values to pH values.
Changes in intracellular pH (pHi) play important roles in the regulation of many cellular functions, including metabolism, proliferation, and differentiation. Typically, pHi dynamics are determined in cultured cells, which are amenable to measuring and experimentally manipulating pHi. However, the recent development of new tools and methodologies has made it possible to study pHi dynamics within intact, live tissue. For Drosophila research, one important development was the generation of a transgenic line carrying a pHi biosensor, mCherry::pHluorin. Here, we describe a protocol that we routinely use for imaging live Drosophila ovarioles to measure pHi in the epithelial follicle stem cell (FSC) lineage in mCherry::pHluorin transgenic wild type lines; however, the methods described here can be easily adapted for other tissues, including the wing discs and eye epithelium. We describe techniques for expressing mCherry::pHluorin in the FSC lineage, maintaining ovarian tissue during live imaging, and acquiring and analyzing images to obtain pHi values.
Recent studies revealed a role for changes in pHi during cellular differentiation and dysplasia in vivo1,2. These studies found that pHi is remarkably consistent in cells of the same type at the same stage of differentiation, but that it changes as cells transition from one stage to another. In some cases, blocking the changes in pHi partially disrupts differentiation, suggesting that the change in pHi is not just a consequence of changes in cell fate but instead helps to promote the change in cell fate, perhaps through effects on pH-sensitive regulatory proteins or chemical reactions required for differentiation. Future studies have the potential to reveal more insight into the many different roles of pHi dynamics in vivo. However, one of the challenges of studying pHi during differentiation in vivo is obtaining accurate measurements of pHi. Unlike other features of differentiation, such as changes in cellular morphology and gene expression, pHi is a labile chemical property of the cell that is not preserved in cells that have been fixed and permeabilized with standard methods. In addition, pHi may not be stable in cells that are stressed or dying as a result of experimental manipulation. Thus, it is important to keep cells alive and as healthy as possible when measuring pHi. Several vital dyes are available that work well for measuring the pHi of cells in culture3, but in many cases they are not suitable for in vivo studies because they do not penetrate the tissue deeply or evenly enough to provide accurate measurements.
To circumvent the problem of poor dye penetration, we and others have used a genetically encoded probe, mCherry::pHluorin4,5,6,7, that can be expressed specifically in the cell types of interest and imaged in live tissue. pHluorin is a variant of GFP with a higher pKa (~ 7.0 vs. ~ 4.0) that folds more readily at higher pH; so the total fluorescence intensity emitted from a population of pHluorin molecules in the cell increases with increasing pHi8. Importantly, fluorescence is linear within the normal cytosolic range of pHi values. In contrast, the fluorescence of mCherry (pKa ~ 4.5) is insensitive to pH changes within the cytosolic range. These two reporters are covalently linked together as a single chimeric protein, encoded by a single open reading frame, so they are always present in equal amounts. Therefore, the ratio of pHluorin to mCherry fluorescence intensity provides a measurement of pHi that is normalized to the probe concentration in each cell. The ratios can then be converted to estimates of pHi values using a standard curve that is generated by obtaining the pHluorin to mCherry ratios from tissues that have been equilibrated to known pH values.
Here, we describe the methods for using mCherry::pHluorin to measure the pHi of the epithelial FSC lineage in the Drosophila ovary. This well-characterized tissue has been used to model many different aspects of epithelial biology, such as stem cell self-renewal and differentiation9,10,11, collective cell migration12, and the development and maintenance of cell polarity13,14. The follicle epithelium is produced by two FSCs that reside at the anterior edge of the tissue in a structure called the germarium15,16. These cells divide regularly during adulthood to self-renew and produce progeny, called prefollicle cells (pFCs), that can either re-enter the niche and become an FSC or differentiate into one of three different follicle cell types: polar cells, stalk cells, or main body follicle cells. We showed previously that in wildtype tissue, the pHi increases steadily during the early stages of differentiation, from a pHi of approximately 6.8 in FSCs to 7.0 in pFCs, to 7.3 in follicle cells2. Blocking this increase by RNAi knockdown of a ubiquitously expressed sodium/proton exchanger, DNhe2, severely impairs pFC differentiation, whereas increasing pHi by overexpression of DNhe2 causes a mild excess differentiation phenotype. These findings demonstrate that pHi is stably maintained in the early FSC lineage and that it can be experimentally increased or decreased in vivo. The methods described here can be used to measure pHi in either wildtype tissue or various forms of mutant tissues, including RNAi knockdown or overexpression using a Gal4 of interest, and mitotic clones.
Access restricted. Please log in or start a trial to view this content.
NOTE: To measure pHi in the FSC lineage, we calculate the ratio of fluorescence intensities of pHluorin to mCherry in FSCs, pFCs, and follicle cells in physiological conditions, and convert the ratios into pHi values with standard calibration curves for each cell type7. First, live imaging experiments are performed to measure fluorescence intensities of pHluorin and mCherry in germaria dissected into a buffer containing NaHCO3, which mimics physiological conditions1,7. Next, standard curves are generated by measuring pHluorin and mCherry fluorescence intensities in a Na+-free, K+ buffer containing the ionophore nigericin adjusted to two different pH values, 6.5 and 7.5. In the presence of nigericin, pHi equilibrates with the pH of the buffer across the plasma membrane, causing pHi to match the extracellular pH. Lastly, the standard curves are used to convert pHluorin to mCherry ratios to estimated pHi values.
1. Pre-Trial: Preparation Before Measuring pHi In Vivo
NOTE: To measure pHi in vivo, the mCherry::pHluorin transgene must be expressed in the cell type of interest. Below are some common ways to generate transgenic pHluorin flies in the FSC lineage. Generating mCherry::pHluorin clones is particularly useful for identifying FSCs, which are located on the anterior edge of an FSC clone. Tissue specific mCherry::pHluorin expression is useful for measuring pHi across the entire tissue and is also more convenient when combining with expression of an RNAi or transgene.
2. Trial: Measuring pHi in the FSC Lineage
NOTE: The dissection, mounting, and live imaging steps for the bicarbonate buffer and the two nigericin buffer conditions may need to be performed twice: once to determine the microscope settings and a second time to collect experimental data. See the section 2.2 below for more information.
3. Post-trial: Image Analysis
Access restricted. Please log in or start a trial to view this content.
Here we have described the process of measuring pHi in the follicle epithelium, which involves several steps. First, the ovaries are dissected from flies of the appropriate genotype using tools for dissecting and mounting (Figure 1). The ovarioles are then imaged using quantitative fluorescence microscopy and the images are analyzed to obtain measurements of pHi. For each image, the cell types of interest are identified as described in Section 3.1 (
Access restricted. Please log in or start a trial to view this content.
Here, we describe a method for measuring the pHi of cells in the FSC lineage within wildtype tissue. This protocol has been developed and refined over the past five years, since we first began to study pHi in Drosophila ovarian tissue. During that time, the protocol has been used successfully by multiple investigators in our lab and on at least four different spinning disc and laser scanning microscopes. The reproducibility of our original observation, that pHi increases as cells in the FSC lineage differentiate...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank Bryne Ulmschneider for contributions to the protocol and Diane Barber for suggestions on the manuscript. This work was funded by a National Institute of Health grant GM116384 to T.G. Nystul and D.L. Barber.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Fly Stocks | |||
UAS-mCherry::pHluorin[1] | |||
y1 w*;P{GawB}10930/CyO | Bloomington Stock Center | 7023 | |
Act-Gal4 flipout stock | Bloomington Stock Center | 4409 | |
Name | Company | Catalog Number | Comments |
Chemicals for Buffer preparation | |||
NaCl | Sigma Aldrich | S5886 | |
KCl | Sigma Aldrich | P-3911 | |
glucose | Mallinckrodt | 4912 | |
HEPES | Thermo Fisher Scientific | BP310 | |
MgSO4 | Thermo Fisher Scientific | M63 | |
CaCl2 | Sigma Aldrich | C-5080 | |
HCO3 | Sigma Aldrich | S-5761 | |
MgCl2 | Sigma Aldrich | M-9272 | |
NMDG+ | Sigma Aldrich | M-2004 | |
K2HPO4 | Mallinckrodt | 7088 | Use to Make KHPO4 pH 7.4 |
KH2PO4 | Thermo Fisher Scientific | BP362 | Use to Make KHPO4 pH 7.4 |
Concanavalin A, Alexa Fluor 647 Conjugate | Thermo Fisher Scientific | C21421 | 0.25 mg/ml dilution |
Nigericin | Thermo Fisher Scientific | N1495 | |
Name | Company | Catalog Number | Comments |
Dissection and mounting tools | |||
2 Dumont Inox forceps (Size 5) | Thermo Fisher Scientific | NC9473431 | |
2 23-gauge syringe needles | Sigma Aldrich | Z192457 | |
9-well glass dissecting dish | Thermo Fisher Scientific | 13-748B | |
Vacuum Grease | Dow Corning | 1018817 | |
22 X 40 mM glass coverslips | Thermo Fisher Scientific | 12545C | |
Round Glass Coverslips, 12mm diameter, 0.13-0.16mm thickness | Ted Pella, Inc. | 26023 | |
3-D mounting chamber | custom manufactured | .stl and .ipt files for 3-D printer included as supplemental files | |
Name | Company | Catalog Number | Comments |
Other equipment | |||
pH meter | Thermo Fisher Scientific | 13-620-183A | Model: Accumet AB15 |
Dissection microscope | Olympus Corporation | 0H11436 | Model: SZ2-ST |
Confocal Microscope | Leica Biosystems | SP5 or SP8 laser-scanning confocal microscope with a 40× objective with a numerical aperture of 1.3 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone