Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the value of dual energy CT and PET/CT imaging methods in tumor imaging and efficacy evaluation. This article demonstrates the research methods and results acquired by dual energy CT and PET/CT to evaluate the gene regulation and targeted treatment of gastric cancer peritoneal metastasis.
Gastric cancer remains fourth in cancer incidence worldwide with a five-year survival of only 20%-30%. Peritoneal metastasis is the most frequent type of metastasis that accompanies unresectable gastric cancer and is a definitive determinant of prognosis. Preventing and controlling the development of peritoneal metastasis could play a role in helping to prolong the survival of gastric cancer patients. A non-invasive and efficient imaging technique will help us to identify the invasion and metastasis process of peritoneal metastasis and to monitor the changes in tumor nodules in response to treatments. This will enable us to obtain an accurate description of the development process and molecular mechanisms of gastric cancer. We have recently described experiment using dual energy CT (DECT) and positron emission tomography/computed tomography (PET/CT) platforms for the detection and monitoring of gastric tumor metastasis in nude mice models. We have shown that weekly continuous monitoring with DECT and PET/CT can identify dynamic changes in peritoneal metastasis. The sFRP1-overexpression in gastric cancer mice models showed positive radiological performance, a higher FDG uptake and increasing enhancement, and the SUVmax (standardized uptake value) of nodules demonstrated an obvious alteration trend in response to targeted therapy of TGF-β1 inhibitor. In this article, we described the detailed non-invasive imaging procedures to conduct more complex research on gastric cancer peritoneal metastasis using animal models and provided representative imaging results. The use of non-invasive imaging techniques should enable us to better understand the mechanisms of tumorigenesis, monitor tumor growth, and evaluate the effect of therapeutic interventions for gastric cancer.
Gastric cancer (GC) remains the fourth most common malignancy and the second-leading cause of cancer mortality worldwide1. Although the accuracy in diagnosis and treatment of gastric cancer has been greatly improved, peritoneal metastasis is the most key point of gastric cancer prognosis or recurrence and is a definitive determinant of postoperative death2. It is generally accepted that peritoneal dissemination is a life-threatening mode of metastasis, wherein the disease becomes uncontrollable and the prognosis of the patient is poor once peritoneal dissemination is established. Therefore, the detection and therapeutic effect evaluation of gastric cancer peritoneal metastasis is crucial for clinical practice.
The increasing incidence and mortality of gastric cancer had spurred researchers to identify its molecular mechanisms. The high expression of genes such as secreted frizzled-related protein 1 (sFRP1) might lead to activation of the signal pathway in the early stages of gastric cancer, promoting the process of tumor growth, proliferation, differentiation, and apoptosis3,4,5,6,7. sFRP1-overexpression cells showed an increase in the expression of TGFβ, its downstream targets, and TGFβ-mediated EMT8. Previous studies have demonstrated that the TGF-β1 level is correlated with peritoneal metastasis and the TNM stages of gastric cancer. We have described the changes in cancer cell proliferation regulated by sFRP1 overexpression and TGF-β1 inhibition, and established animal models for peritoneal metastasis to show the performance of tumor imaging under the effects of gene regulation.
Animal models for gastric cancer are indispensable tools for researching tumor development and experimenting with various therapeutic strategies without having to sacrifice animals. Animal models have proven useful in studying the formation mechanisms of tumors and cells of origin, determining the presence of cancer stem cells, and examining various novel therapeutic strategies. Therefore, a real-time non-invasive technique can provide an accurate description of the development of gastric tumors and tumor response to treatments, which can identify the development of peritoneal metastasis nodules in nude mice and monitor the changes of a tumor in response to various experimental and therapeutic interventions.
Currently, multi-detector CT (MDCT) plays an important role in the TNM staging of gastric cancers and is useful for predicting tumor resectability preoperatively9. However, radiological studies of patients with histologically proven gastric carcinoma have mainly been based on morphology. DECT imaging extends the parameters to reflect functional information by providing monochromatic images and may be helpful for improving the N staging accuracy for gastric cancers. Furthermore, this technique will enable the acquisition of material-decomposition images, which may be useful to differentiate between differentiated and undifferentiated gastric carcinoma, and between metastatic and non-metastatic lymph nodes10. With the introduction of DECT, the functional imaging aspect of CT has also been added to clinical applications, contributing to evaluations of therapeutic efficacy and predicting patient prognoses11,12,13. PET/CT is a useful imaging technique for the detection and staging of gastric cancer and can evaluate the recurrence of the tumor effectively14. Tumor cell proliferation and angiogenesis were both considered to be necessary in the development of a detectable tumor15, tumor nodules showed a positive performance with higher SUVmax on PET/CT. Based on their preference for aerobic glycolysis, 18F-FDG, a glucose analog, has been exploited as a promising tracer in the diagnosis of malignancies, combined with PET/CT16. This method relies on the rapid glucose consumption of tumor tissue and has broad clinical applications, including assisting in the detection, staging, and evaluation of the prognosis of tumors, as well as monitoring the tumors' response to therapy17,18. As non-invasive methods, DECT and PET/CT have been utilized to diagnose malignant tumors and to assess tumor response to various therapies.
Our group has been using this non-invasive imaging method with DECT and PET/CT scanners to detect and monitor the process of tumor growth and metastasis in living mice19. We explored imaging findings induced by the sFRP1-overexpression in gastric cancer cells in vivo using nude mice, with DECT and PET/CT, and described the changes of the SUVmax value following targeted therapy by the TGF-β1 inhibitor to confirm the development of tumor nodules in the peritoneum after gene induction, and also studied the changes in tumor nodules in response to experimental treatments. In this paper, we present detailed procedures for modeling gastric tumor peritoneal metastasis in mice, and its detection and monitoring with DECT and PET/CT.
This work was performed in strict accordance with the standards established by the Guidelines for the Care and Use of Laboratory Animals of Shanghai Jiao Tong University and was approved by the laboratory Animal Ethics Committee of Ruijin Hospital.
1. Gastric Cancer Peritoneal Metastasis Animal Model
2. DECT for Peritoneal Metastasis Animal Model
NOTE: The animal imaging experiment was achieved on the dual energy CT scanner (see Table of Materials). We created the related DECT imaging protocol according to the previous studies.
3. PET/CT for Peritoneal Metastasis Animal Model
NOTE: See the table of materials for the PET/CT imager used. We created the related PET/CT imaging protocol according to this article21.
DECT and PET/CT scanning were performed on nude mice after two weeks of cell line injections. GSI images yielded excellent results for displaying subcutaneous metastasis beyond the contour of the abdomen for the sFRP1 overexpression group, and metastasis with peripheral enhancement was confirmed by color-scale image (Figure 1a-c). PET/CT images depicted focally abnormal FDG uptake of metastasis, including in the peritoneal and subcutaneous me...
Animal models have been used widely in the study of molecular mechanisms underlying gastric cancer, and to experiment with various therapeutic strategies23,24,25. In this study, we have described a detailed protocol for gastric cancer peritoneal metastasis nude mice modeling, using DECT and PET/CT to image gastric tumors for identifying tumor cell proliferation in real-time, and monitoring peritoneal metastasis and responses to ...
The authors have no conflicts of interest to declare.
This work was supported by the NSFC (No. U1532107) and Shanghai Jiao Tong University Biomedical Engineering project (No. YG2014MS53). The authors would like to acknowledge Jianying Li and Yan Shen for their helpful comments and technical support efforts in developing the DECT and PET/CT imaging method.
Name | Company | Catalog Number | Comments |
Iohexol | BEJING BEILU PHARMACEUTICAL CO,LTD | NMPN:H20053800 | non-ionic contrast medium for DECT scan |
normal saline | HUNAN KELUN PHARMACEUTICAL CO,LTD | NMPN:H43020455 | placebo of control group |
BALB/c nude mice | SLAC LABORATORY ANIMAL | BALB/cASlac-nu | animal model |
SGC-7901 cells | Library of typical culture of Chinese academy of sciences | TCHu 46 | gastric cancer cell |
SB431542 | Selleck | No.S1067 | TGF-β1 inhibitor |
GE Discovery CT750 HD | GE Healthcare | dual-energy spectral CT scanner | |
AW Volumeshare5 | GE Healthcare | dual-energy spectral CT workstation | |
Siemens Inveon micro-PET/CT | Siemens Preclinical Solution | positron emission tomography/ computed tomography scanner | |
Inveon Acquisition Workplace | Siemens Preclinical Solution | PET-CT workstation |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone