Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the analysis of blinking surface-enhanced Raman scattering due to the random walk of a single molecule on a silver surface using power laws.
From a single molecule at a silver nanoaggregate junction, blinking surface-enhanced Raman scattering (SERS) is observed. Here, a protocol is presented on how to prepare the SERS-active silver nanoaggregate, record a video of certain blinking spots in the microscopic image, and analyze the blinking statistics. In this analysis, a power law reproduces the probability distributions for bright events relative to their duration. The probability distributions for dark events are fitted by a power law with an exponential function. The parameters of the power law represent molecular behavior in both bright and dark states. The random walk model and the speed of the molecule across the entire silver surface can be estimated. It is difficult to estimate even when using averages, autocorrelation functions, and super-resolution SERS imaging. In the future, power law analyses should be combined with spectral imaging, because the origins of blinking cannot be confirmed by this analysis method alone.
Surface-enhanced Raman scattering (SERS) is highly sensitive Raman spectroscopy from a noble metal surface. Since the Raman spectrum provides detailed information about molecular structure based on the sharp peak positions, through the vibrational modes of functional groups in the molecules, the information of a single molecule on a metal surface can be investigated using SERS1,2,3. From a silver nanoaggregate with an adsorbate at the single-molecule level, a blinking signal is observed1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, and the spectrum fluctuates1,2,3,4,5,6,7,8,9,10,11,12,13,14. Blinking can be induced by a single molecule that randomly moves in and out of an enhanced electromagnetic (EM) field at a nanometer-sized silver nanoaggregate junction. Therefore, blinking is considered simple evidence for single-molecule detection, compared with a technique using a Poisson distribution of SERS intensities and a bi-analyte2,3,17. However, the detailed mechanisms of the blinking and fluctuating spectrum, which may strongly depend on molecular behavior on the Ag surface, are still controversial.
In previous studies, blinking SERS has been analyzed using the autocorrelation function, which can calculate the diffusion coefficient and concentration of molecules moving in and out of an enhanced EM field12,13,14. Moreover, a normalized standard deviation score, which represents instability in the total intensity, has been derived from the time profile of the signal15. However, these analytic approaches may be based on the behavior of a few molecules. In contrast, in a super-resolution imaging of blinking SERS, single-molecule behavior in an enhanced EM field can be identified16. However, these techniques can obtain such parameters only in an enhanced EM field. The random behavior of a single molecule within a wide range (for instance, in blinking SERS) can be represented as a power law rather than an average4,5,6,7,8,9,10,11, similar to blinking fluorescence from a single semiconductor quantum dot (QD)18,19. By using a power law analysis4,5,6,7,8,9,10,11, molecular behavior can be estimated in both the bright state (in the enhanced EM field) and dark state10; that is, the behavior of the molecule over the entire silver surface can be estimated.
For this technique, silver colloidal nanoaggregates are used4,5,6,7,8,9,10,11. These nanoaggregates show various localized surface plasmon resonance (LSPR) bands that strongly affect enhanced electromagnetic fields when they are excited at certain wavelengths. Thus, SERS-active silver nanoparticles exist in colloidal suspension, and some data can immediately be obtained. In the case of simple nanostructures, which have specific sizes, shapes, and arrangements, the LSPR dependence of SERS blinking can conceal other dependences7; namely, if the good or bad nanostructure to LSPR is used, the parameters will be constant, and the other dependences will therefore be hidden. Power law analysis has been used to discover various dependences of the blinking SERS from silver colloidal nanoaggregates4,5,6,7,8,9,10,11.
Access restricted. Please log in or start a trial to view this content.
1. Sample Preparation
2. Observation of Blinking Silver Nanoparticles
3. Analysis of Blinking SERS
Access restricted. Please log in or start a trial to view this content.
From the silver nanoaggregates with poly-L-lysine prepared by protocol 1.2, multicolored blinking spots from SERS and surface-enhanced fluorescence are observed, as shown in Figure 111. In contrast, monotonous colored blinking spots from SERS were observed for the silver nanoaggregates with the dye molecules prepared by protocol 1.37,8,9,...
Access restricted. Please log in or start a trial to view this content.
From the silver nanoaggregate junction, SERS is emitted. Thus, we need to prepare nanoaggregates rather than colloidal nanoparticles, which are covered with citrate anions. Silver aggregates are formed from the salting out effect created by the addition of poly-L-lysine, which has -NH3+ and is the origin of the SERS, or Na+ cations from NaCl, as shown in Figure S2 of the supplementary material. Moreover, to illuminate the many spots in the wide area, the unfocused laser b...
Access restricted. Please log in or start a trial to view this content.
The author has nothing to disclose.
The author thanks Prof. Y. Ozaki (Kwansei Gakuin University) and Dr. T. Itoh (National Institute of Advanced Industrial Science and Technology) for their fruitful discussion of this work. This work was supported by KAKENHI (Grant-in-Aid for Scientific Research C) from the Ministry of Education, Culture, Sports, Science, and Technology (No. 16K05671).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Silver nitrate, 99.8% | Wako | 194-00832 | |
Trisodium citrate dihydrate, 99. % | Wako | 191-01785 | |
Poly-L-lysine aqueous solution, 0.1% | Sigma-Aldrich | P8920 | |
3,3'-disulfopropylthiacyanine triethylamine | Hayashibara Biochemical Laboratories | NK-2703 | a kind of thiacyanine dyes |
3,3'-diethyl-5,5'-dichloro-9-methylthiacarbocyanine iodine salt | Hayashibara Biochemical Laboratories | SMP-9 | a kind of thiacarobocyanine dyes |
Sodium chloride, 99.5% | Wako | 191-01665 | |
Dimroth condenser | Iwaki | 61-9722-22 | perchased from AS ONE |
Magnetic stirrer | Corning | DC-420D | |
Oil bath | Advantech | OS-220 | |
Glass plate | Matsunami | S-1112 | Microscope slide |
Blower | Hozan | Z-288 | Air duster |
Liquid blocker pen | Daido Sangyo | LIQUID BLOCKER (Super Pap Pen). Ready-to-use hydrophobic barrier pen designed for immunohistochemistry applications | |
Inverted microscope | Olympus | IX-70 | |
Objective lens | Olympus | LCPlanFl 60× | NA 0.7 |
Dark field condenser | Olympus | U-DCD | NA 0.8–0.92 |
Cooled digital CCD camera | Hamamatsu | ORCA-AG | controlled by software Aqua Cosmos |
Software for the cooled digital CCD camera | Hamamatsu | AquaCosmos | used for also derivation of the time-profiles from the blinking spots in the video |
Color CCD camera | ELMO | TNC-C920 | not used for analysis |
DPSS laser | RGB laser system | NovaPro532-75 | λ = 532 nm; 60 mW (corresponds to a power density of 600 W/cm2) |
Interference filter | Semrock | LL01-532-12.5 | |
Long pass filter | Semrock | BLP01-532R-25 | |
Software for the distinguishment and counting of the bright/dark events | home-maid | programmed by C++ | |
Software for the fitting by a power law | LightStone | Origin6.1 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone