Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This article presents a total internal reflection absorption spectroscopy (TIRAS) method for measuring short-lived free radicals at a plasma-liquid interface. In particular, TIRAS is used to identify solvated electrons based on their optical absorbance of red light near 700 nm.
The total internal reflection absorption spectroscopy (TIRAS) method presented in this article uses an inexpensive diode laser to detect solvated electrons produced by a low-temperature plasma in contact with an aqueous solution. Solvated electrons are powerful reducing agents, and it has been postulated that they play an important role in the interfacial chemistry between a gaseous plasma or discharge and a conductive liquid. However, due to the high local concentrations of reactive species at the interface, they have a short average lifetime (~1 µs), which makes them extremely difficult to detect. The TIRAS technique uses a unique total internal reflection geometry combined with amplitude-modulated lock-in amplification to distinguish solvated electrons' absorbance signal from other spurious noise sources. This enables the in situ detection of short-lived intermediates in the interfacial region, as opposed to the bulk measurement of stable products in the solution. This approach is especially attractive for the field of plasma electrochemistry, where much of the important chemistry is driven by short-lived free radicals. This experimental method has been used to analyze the reduction of nitrite (NO2-(aq)), nitrate (NO3-(aq)), hydrogen peroxide (H2O2(aq)), and dissolved carbon dioxide (CO2(aq)) by plasma-solvated electrons and deduce effective rate constants. Limitations of the method may arise in the presence of unintended parallel reactions, such as air contamination in the plasma, and absorbance measurements may also be hindered by the precipitation of reduced electrochemical products. Overall, the TIRAS method can be a powerful tool for studying the plasma-liquid interface, but its effectiveness depends on the particular system and reaction chemistry under study.
Plasma-liquid interactions represent an area of growing interest in the plasma science and engineering community. The complex interface between plasmas and liquids, which contains a variety of highly reactive free radicals, has found applications in many areas including analytical chemistry, plasma medicine, water and wastewater treatment, and nanomaterial synthesis1,2,3,4,5,6. While there are various configurations that can be used to bring a plasma in contact with a liquid7, perhaps the simplest is the plasma analog of an electrolytic cell, where one of the standard metal electrodes is replaced with a plasma or gas discharge8. The plasma electrochemical cell consists of a reactor vessel, a submerged metal electrode, and a plasma discharge, which can function as either the cathode or anode (or both). When the plasma discharge is used as a cathode, gas-phase electrons generated in the plasma are injected into the solution. After the electrons enter the solution, their kinetic energy dissipates on the timescale of femtoseconds9,10,11 primarily through inelastic scattering off the solvent molecules. Once the electrons have reached a near-thermal kinetic energy, they trap and solvate in a cavity formed by surrounding solvent molecules. Depending on the solvent and temperature, these "solvated" electrons may be stable until they react with some reducible species in the solution or with another solvated electron. In aqueous solution, solvated electrons are also referred to as hydrated electrons12.
This process of solvation has long been known, and the detection of hydrated electrons generated by procedures such as pulse radiolysis or flash photolysis has been studied since the 1960s13,14,15. In traditional radiolysis and photolysis, the solvated electrons are produced via ionization of the solvent molecules; however, electrons solvated at the plasma-liquid interface are injected from the gaseous plasma16. Previous experiments have determined that hydrated electrons absorb red light near 700 nm13,14,17, which allows them to be experimentally studied via optical absorption spectroscopy. Other experiments have measured their diffusion constants, their reaction rates with hundreds of chemical species, their radius of gyration, and their charge mobility, among other properties of interest12,18.
Within the literature, several methods to detect solvated electrons have been reported, which can be separated mainly into two types: bulk dosimetry, where solvated electron presence is inferred from the bulk chemical analysis of their reaction products, and direct transient absorption spectroscopy, where the electrons' absorbance is measured as the reaction takes place. The latter category, upon which the methodology presented here is based, has the advantage of direct and instant evidence, as well as the ability to monitor intermediate reactions.
The rationale behind the development of the total internal reflection absorption spectroscopy (TIRAS) methodology was to directly study the role of solvated electrons at the plasma-liquid interface. The reflection geometry was chosen, because the production of solvated electrons using a plasma discharge, as opposed to methods like radiolysis or photolysis, occurs at the interface between the plasma and the liquid. When a probe laser grazes the surface at a shallow angle of incidence, it is totally reflected back into the solution and out into a detector, less the small amount of light absorbed by the electrons. With no light escaping into the plasma, the experimental technique only measures free radicals in the liquid phase, just beneath the interface, and is thus a highly sensitive interfacial measurement technique. Additionally, the total internal reflection phenomenon has the advantage of eliminating noise from the changing of partial reflections due to surface fluctuations, which could otherwise dominate the signal.
The TIRAS protocol outlined in this article has three essential features. The first is a plasma electrochemical cell, which consists of a transparent glass beaker with two optical windows at angles of approximately 20° facing downward and a controlled headspace of argon gas. The second feature is the optical measurement system, which includes a diode laser, an optical cage, and a photodiode detector. The laser provides the light that is absorbed by the solvated electrons, and is mounted in line with an adjustable iris and a 50 mm lens in an optical cage. This arrangement is mounted on a goniometer, which allows it to be rotated to a desired angle of incidence. The intensity of the transmitted light is then measured by the photodetector, which consists of a large area photodiode wired in a reverse-bias leakage circuit. Finally, because of their high reactivity, solvated electrons only penetrate ~10 nm into the solution, which yields an extremely small optical absorption signal of ~10-5 optical density. To ensure a sufficiently high signal-to-noise ratio, the third essential component is a lock-in amplification system, which consists of a plasma switching circuit and a lock-in amplifier. In the switching circuit, a solid-state relay circuit modulates the plasma current between a high and a low value at a carrier frequency of 20 kHz set by a function generator. This, in turn, also modulates the solvated electron concentration at the interface and their optical absorbance. The lock-in amplifier then takes the signal from the photodetector and filters all noise outside the carrier frequency.
The TIRAS method has great potential to reveal important chemical processes in plasma-liquid experiments, particularly in plasma electrochemistry. The reduction and oxidation pathways are primarily driven by a variety of short-lived radicals at the plasma-liquid interface, and the detection of the species is extremely important for understanding the interfacial chemistry. The in situ monitoring capabilities of TIRAS will help establish a greater understanding of the important electron-driven reactions involved at the plasma-liquid interface. TIRAS, for example, makes the measurement of reaction rates possible in the presence of electron scavengers. Previous studies have focused on the reduction of NO2-(aq), NO3-(aq), and H2O2(aq) scavengers dissolved in the aqueous solution16, as well as the reduction of dissolved CO2(aq)19. Other studies have focused on the effect of the plasma carrier gas on plasma-solvated electron chemistry20.
1. Constructing the Experimental Setup
Note: To run this experiment, assemble a system consisting of a plasma reactor where the reaction will take place, optical components for absorbance measurements, and the electronic lock-in amplification system to process the signal.
2. Prepare NaClO4 Solution as a Conductive Background Electrolyte
3. Prepare Setup for Measurements
4. Start Experiment and Data Collection
Note: An in-house program is used for data collection. Additionally, this system is automated to ensure precision and reduce human error. The underlying process of this automation is described in the following steps.
5. Data Analysis
Note: Output from the lock-in amplifier contains information about the amplitude R and phase ϕ of the 20 kHz absorbance signal. This can be represented by cosine and sine components, X and Y, respectively. Because the lock-in amplifier measures the modulated amplitude of the signal between the high and low currents set at step 1.3.2, the X and Y represent the differences between these two signals, and are used to measure the difference of absorbance between the low and high states, ΔI.
6. Extraction of Parameters
7. Reaction Rate Estimation
Note: When electrons solvate in a solution with unreactive electrolytes such as NaClO4, solvated electrons are only consumed by the reaction in Equation 2. However, solvated electrons have the capacity to reduce a wide variety of cations, anions, and neutral species. When any of these electron scavengers are dissolved in the aqueous solution, they react with the solvated electrons. This lowers their equilibrium concentration and leads to a reduction of the absorbance detected, which allows the TIRAS methodology to estimate the reaction rate constants of these reactions. When a new reaction is introduced, the rate balance becomes:
(5)
where [(S)aq] is the concentration of the electron scavenger in the solution, and k2 is the reaction rate constant associated with its reaction. However, if the scavenger concentration is sufficiently large, Equation 5 can be simplified to:
(6)
Equation 3 can be then combined with Equation 6 to obtain a relationship between absorbance and the scavenger concentration.
(7)
As mentioned in step 5 of the procedure, this experiment measures the cosine and sine components of the absorbance signal, the phase angle between them, and the magnitude of the signal. A plot of the magnitude of the signal and its two components is shown in Figure 4.
Occasionally, there will be measurements which may be not optimal or even unusable. This may be due to a misalignment of the laser wi...
The results show that the measurement of absorbance of light at the plasma-liquid interface is an effective method to detect and measure the concentration of plasma-solvated electrons in an aqueous solution. The subsequent measurement at different wavelengths results in the measurement of the absorption spectrum. Though this experiment was done in an aqueous NaClO4 solution, the methodology should be valid for a great variety of other liquids, provided that electrons can solvate in the liquid.
The authors have nothing to disclose.
This work was supported by the U.S. Army Research Office under Award Numbers W911NF-14-1-0241 and W911NF-17-1-0119. DMB is supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FC02- 04ER1553.
Name | Company | Catalog Number | Comments |
Function Generator | Protek | B8055 | |
Lock-in Amplifier | Stanford Research Systems | SR830 | |
High-Voltage Power Supply | Stanford Research Systems | PS325 | |
Photodetector | Self-built | ||
Flowmeter | Key Instruments | 60310 R5 | |
Flow controller | Omega Engineering | FMA 5400A/5500A | |
Camera | Dino-lite | Dinocapture 2.0 | |
Voltmeter | Amprobe | AM-510 | |
Optical Cage System | Thorlabs | 30 mm cage system | |
Goniometers | Thorlabs | RP01 - Ø2 | Manual rotation stage |
Diode lasers | Thorlabs | ||
Electrochemical cell | Adams & Chittenden Scientific Glass | Custom-made product | |
Stainless steel capillary | Restek | 0.007 in. ID | |
SHV Coax Cable | SRS | Custom-made product | |
Sodium Perchlorate | Sigma-Aldrich | ACS reagent, ≥98.0% | |
Argon | Airgas | AR UHP300 | Ultra-high purity |
LabVIEW | National Instruments | Software used to generate in-house program used to collect data |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone