Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The goal of this protocol is to establish ex vivo Drosophila larval brain culture optimized to monitor circadian molecular rhythms with long-term fluorescence time-lapse imaging. The application of this method to pharmacological assays is also discussed.
The circadian pacemaker circuit orchestrates rhythmic behavioral and physiological outputs coordinated with environmental cues, such as day/night cycles. The molecular clock within each pacemaker neuron generates circadian rhythms in gene expression, which underlie the rhythmic neuronal functions essential to the operation of the circuit. Investigation of the properties of the individual molecular oscillators in different subclasses of pacemaker neurons and their interaction with neuronal signaling yields a better understanding of the circadian pacemaker circuit. Here, we present a time-lapse fluorescent microscopy approach developed to monitor the molecular clockwork in clock neurons of cultured Drosophila larval brain. This method allows the multi-day recording of the rhythms of genetically encoded fluorescent circadian reporters at single-cell resolution. This setup can be combined with pharmacological manipulations to closely analyze real-time response of the molecular clock to various compounds. Beyond circadian rhythms, this multipurpose method in combination with powerful Drosophila genetic techniques offers the possibility to study diverse neuronal or molecular processes in live brain tissue.
Circadian clocks help organisms to adapt to the periodic environmental changes generated by the 24 h rotation of the Earth. The interlocked transcriptional-translational feedback loops commonly underlie the molecular machinery of circadian clocks across species1. The circadian pacemaker circuit composed of clock-containing neurons integrates time-of-day information conveyed by the environmental cues, such as light/dark (LD) and temperature cycles, to orchestrate the rhythms of a plethora of daily physiological and behavioral processes2,3. The coordination of molecular rhythms with neuronal inputs and outputs is critically important for the operation of the circadian circuit but remains only partially understood.
In Drosophila, at the core of the molecular clock, the CLOCK/CYCLE (CLK/CYC) heterodimer activates the transcription of period (per) and timeless (tim). PER and TIM form a complex and enter the nucleus, where they inhibit transcriptional activity of CLK/CYC and consequently their own transcription. Post-transcriptional and post-translational regulations cause delays between CLK/CYC-mediated transcription and repression by PER/TIM, ensuring the generation of circa 24-h molecular oscillations1,3,4. About 150 neurons containing these molecular clocks form a circuit to control circadian behavior of adult flies5. A much simpler yet fully functional circadian circuit consisting of 3 groups of clock neurons - 5 ventral Lateral Neurons (LNvs; 4 PDF-positive LNvs and one PDF-negative LNv, see below), 2 Dorsal Neuron 1s (DN1s) and 2 Dorsal Neuron 2s (DN2s) - is present in the larval brain6,7.
The simple larval circadian circuit offers an excellent model to study the interactions between inter-neuronal communication and the molecular clockwork. Using our newly developed fluorescent reporter PER-TDT, which mimics the levels of PER protein and its subcellular location, we sought to characterize the dynamics of the molecular clockwork in different clock neuron subgroups in the larval circadian circuit8. Furthermore, knowing the key role of the neuropeptide pigment-dispersing factor (PDF) produced by 4 LNvs in regulating circadian rhythms at the neuronal level9,10,11, we wanted to examine the direct effect of PDF on the molecular clocks. To this end, we developed a method to monitor circadian gene expression rhythms in larval brain explant over multiple days by time-lapse confocal microscopy. The protocol was also adapted for pharmacological assays to test the effect of PDF or other compounds on the level of PER-TDT. Thus, the adaptation consists of making the brain explant culture accessible to drug application, increasing temporal resolution and imaging for a shorter duration.
Ex vivo culture of Drosophila brains of different developmental stages have been previously established12,13,14,15,16,17,18. Whereas these protocols have been used for imaging various biological phenomena, some of them are not compatible with imaging at single-cell resolution or do not support the culture for more than several hours. Alternative methods to perform long-term live imaging of circadian neurons in Drosophila include bioluminescence imaging of molecular rhythms19,20,21 and fluorescence imaging of calcium indicator with light sheet microscopy22,23. Although bioluminescence imaging can achieve higher temporal resolution and light sheet microscopy can be adaptable for in vivo imaging, they are limited on the spatial resolution and require specialized microscope systems.
The method described here is tailored to visualize fluorescent signals in the whole brain culture at single-cell resolution over multiple days. This facile and versatile method could be adapted to image cultured adult fly brains and for pharmacological experiments to study many different problems in Drosophila neurobiology.
1. Preparation of Stock Solutions Under a Culture Hood
2. Time-lapse Microscopy Setup
NOTE: The following setup is for a tandem scanner inverted confocal microscope (see Materials Table) equipped with a resonant scanner (8,000 Hz). The system includes a highly sensitive photo-multiplier detector, which together with the resonant scanner prevents phototoxicity and photobleaching. Temperature and humidity are controlled within a microscope environmental chamber (see Materials Table) that covers most of the microscope.
3. Setup of Larval Brain Explant Culture
NOTE: The whole procedure from dissection to embedding of brain explants takes ~30 min.
4. Time-lapse Image Acquisition
5. Pharmacological Treatment of brain Explants with Short-term Live Imaging
NOTE: The following procedure is essentially the same as that for long-term imaging but does not require a PTFE membrane. To avoid exposing the brains to blue light when the chemical is added to the culture, the microscope should be placed in the dark room with red light.
Here, we show the representative results of the long-term recording of a circadian fluorescent reporter in ex vivo larval brain culture, and the live imaging results of PDF bath application on reporter expression.
Non-wandering L3 larvae expressing the molecular clock reporter PER-TDT and UAS-mCD8::YFP driven by a clock neuron driver Clk(856)-gal4 (Figure 1C) were entrained in LD. ...
Here we described the method for long-term fluorescence time-lapse microscopy of cultured larval brains. The success of this type of experiments depends on multiple factors, such as the health of the culture, method for immobilization of the brain explant, fluorescence intensity and signal-to-noise ratio of the reporter, temporal and spatial resolution, and accessibility to the explant. These factors can be mutually exclusive. For example, increasing time-lapse frequency affects the health of the culture, and the immobil...
The authors have nothing to disclose.
We thank Michael Rosbash for his mentorship and support during the initial phase of the development of this method. This work was funded by the JST PRESTO program, the Swiss National Science Foundation (31003A_149893 and 31003A_169548), the European Research Council (ERC-StG-311194), Novartis Foundation for Medical-Biomedical Research (13A39) and the University of Geneva.
Name | Company | Catalog Number | Comments |
KH2PO4 | Sigma-Aldrich | P5655 | I am not sure they are exactly the same ones we have in the lab. I chose "suitable for insect cell culture" whenever available |
CaCl2 | Sigma-Aldrich | C7902 | |
MgSO4.7H2O | Sigma-Aldrich | 230391 | |
NaCl | Sigma-Aldrich | S5886 | |
NaHCO3 | Sigma-Aldrich | S5761 | |
D-(+) Glucose | Sigma-Aldrich | G7021 | |
Yeast extract | Sigma-Aldrich | Y1000 | |
Insulin | Sigma-Aldrich | I0516-5ML | |
Penicillin-Streptomycin | Sigma-Aldrich | P4333 | |
BIS-TRIS | Sigma-Aldrich | B4429 | |
L-(−)-Malic acid | Sigma-Aldrich | M7397 | |
D-(+)-Trehalose dihydrate | Sigma-Aldrich | T0167 | |
Succinic acid | Sigma-Aldrich | S9512 | |
Fumaric acid | Sigma-Aldrich | F8509 | |
α-Ketoglutaric acid | Sigma-Aldrich | K1128 | |
Non-heat-inactivated, Foetal Calf Serum (FCS) Mycoplasma and Virus screened | BioConcept Ltd. Amimed | 2-01F30-I | |
HEPES-KOH, pH 7.4 | E&K Scientific Products | EK-654011 | |
KCl | Sigma-Aldrich | P5405 | |
NaH2PO4 | Sigma-Aldrich | S5011 | |
Sucrose | Sigma-Aldrich | S7903 | |
Fibrinogen from bovine plasma | Calbiochem (Merck) | 341573-1GM | CAUTION: Harmful by inhalation, in contact with skin and if swallowed. Manipulate under laminar flow |
Thrombin from bovine plasma | Sigma-Aldrich | T9549 | CAUTION: Health Hazard, use gloves |
PDF, NH2-NSELINSLLSLPKNMNDA-OH | Chi Scientific | custom made | |
Vaccum grease | Sigma-Aldrich | 18405 | |
35 mm Dish, No. 1.5 Coverslip, 20 mm Glass Diameter, Uncoated | MatTek | P35G-1.5-20-C | |
Corning Falcon Easy-Grip Tissue Culture Dishes | fisherscientific | 08-772A | |
Sterile 500 mL Steritop-GP 33 mm threaded bottle top filter, 0.22 μm | Millipore | SCGPS05RE | |
Polytetrafluoroethylene (PTFE) film | Dupont | 200A Teflon FEP Film | |
Millex-HV Syringe Filter Unit, 0.45 µm, PVDF, 33 mm, gamma sterilized | Millipore | SLHV033RS | |
Millex-GV Syringe Filter Unit, 0.22 µm, PVDF, 33 mm, gamma sterilized | Millipore | SLGV033RS | |
Three-well glass dissection dish | Any company | ||
Fine forceps, size 5, Dumont | Fine Science Tools | 11254-20 | |
Tandem scanner inverted TCS SP5 confocal microscope, with resonant scanner and HyD photo-multiplier detectors | Leica microsystem CMS GmbH | ||
Temperature control chamber | Life Imaging Services | The CUBE & BOX temperature control system, custom designed | |
Stage-top humidity controller | Life Imaging Services | custom made | |
Water Immersion Micro Dispenser: dispenser, extended micro-pump MP6 series and Autoimmersion Objective Controller software | Leica microsystem CMS GmbH | ||
SUM-stack creation and 3D correction drift plugin | ImageJ software | ||
10x iterative deconvolution | AutoQuant and Imaris software |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone