JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Three-electrode cells are useful in studying the electrochemistry of lithium-ion batteries. Such an electrochemical setup allows the phenomena associated with the cathode and anode to be decoupled and examined independently. Here, we present a guide for construction and use of a three-electrode coin cell with emphasis on lithium plating analytics.

Streszczenie

As lithium-ion batteries find use in high energy and power applications, such as in electric and hybrid-electric vehicles, monitoring the degradation and subsequent safety issues becomes increasingly important. In a Li-ion cell setup, the voltage measurement across the positive and negative terminals inherently includes the effect of the cathode and anode which are coupled and sum to the total cell performance. Accordingly, the ability to monitor the degradation aspects associated with a specific electrode is extremely difficult because the electrodes are fundamentally coupled. A three-electrode setup can overcome this problem. By introducing a third (reference) electrode, the influence of each electrode can be decoupled, and the electrochemical properties can be measured independently. The reference electrode (RE) must have a stable potential that can then be calibrated against a known reference, for example, lithium metal. The three-electrode cell can be used to run electrochemical tests such as cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Three-electrode cell EIS measurements can elucidate the contribution of individual electrode impedance to the full cell. In addition, monitoring the anode potential allows the detection of electrodeposition due to lithium plating, which can cause safety concerns. This is especially important for the fast charging of Li-ion batteries in electric vehicles. In order to monitor and characterize the safety and degradation aspects of an electrochemical cell, a three-electrode setup can prove invaluable. This paper aims to provide a guide to constructing a three-electrode coin cell setup using the 2032-coin cell architecture, which is easy to produce, reliable, and cost-effective.

Wprowadzenie

Although the origin of lithium-batteries can be traced arbitrarily far back into the past, the large-scale production and commercialization of many of today's commonly found lithium-ion batteries began in the 1980s. Many of the materials developed during this era, one example being Lithium Cobalt Oxide (LiCoO2), are still commonly found in use today1. Many current studies have been focused towards the development of various other metal oxide structures, with some emphasis placed towards reducing or eliminating the use of cobalt in place of other lower cost and more environmentally benign metals, such as manganese or nickel

Access restricted. Please log in or start a trial to view this content.

Protokół

1. Reference Electrode and Separator Preparation

  1. Reference electrode preparation
    1. Wire preparation
      1. Cut one 120-mm length of size 32 AWG (0.202 mm diameter) enameled copper wire.
        NOTE: Each wire will become 1 reference electrode and will be used inside 1 three-electrode cell.
      2. Place one end of the wire in a laboratory press. Gently press approximately 10 mm of wire at one end to a pressure of about 4 MPa. Cut the excess wire off the wire tip so that the flattened section is ~2 mm in length.
        NOTE: The average thickness of the tip is approximately 0.1 mm. Be careful not to....

Access restricted. Please log in or start a trial to view this content.

Wyniki

Typical results for the voltage and potential profiles for the three-electrode cell can be seen in Figure 7. In an ideal setup, the full cell voltage should be identical to that produced from a two-electrode cell using the same electrode couple. This is one method to determine whether the insertion of the reference electrode modifies the performance of the cell. If there is a significant difference between the two- and three-electrode full cell performance (f.......

Access restricted. Please log in or start a trial to view this content.

Dyskusje

Cell crimping pressure plays an important part in the success rate of both the preparation and working cells. If the cell is crimped at too high a pressure (>800 psi), the reference electrode can become shorted with the cell cap due to the reference wire position in-between the cap and the gasket. Note that the wire crossing this interface is a requirement in order to connect the reference electrode reading to an external measurement device. If the cell pressure is too low (<700 psi), the cell can have issues wit.......

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

Financial support from the Texas Instruments (TI) University Research Partnership program is gratefully acknowledged. The authors also gratefully acknowledge the assistance of Chien-Fan Chen from the Energy and Transport Sciences Laboratory, Mechanical Engineering, Texas A&M University, during the initial stage of this work.

....

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
Agate Mortar and PestleVWR89037-4925 in diameter
Die SetMayhew66000
Laboratory PressMTIYLJ-12
Analytical ScaleOhausAdventurer AX
High-Shear Mixing DeviceIKA3645000
Argon-filled GloveboxMBraunLABstar
Hydraulic CrimperMTIMSK-110
Battery CyclerArbin InstrumentsBT2000
Potentiostat/Galvanostat/EISBio-LogicVMP3
Vacuum Oven and PumpMTI-
Copper WireRemingtonPN15532 AWG
Glass BallsMcMasterr-Carr8996K256 mm borosilicate glass balls
Stirring TubeIKA370300020 ml
Celgard 2500 SeparatorMTIEQ-bsf-0025-60C25 μm thick; Polypropylene
Stainless Steel CR2032 Coin Cell KitPred MaterialsCoin cell kit includes: case, cap, PP gasket
Stainless Steel SpacerPred Materials15.5 mm diameter × 0.5 mm thickness
Stainless Steel Wave SpringPred Materials15.0 mm diameter × 1.4 mm height
Li-ion Battery Anode - GraphiteMTIbc-cf-241-ss-005Cu Foil Single Side Coated by CMS Graphite (241mm L x 200mm W x 50μm Thickness)
Li-ion Battery Cathode - LiCoO2MTIbc-af-241co-ss-55Al Foil Single Side Coated by LiCoO2 (241mm L x 200mm W x 55μm Thickness)
Polyvinylidene Difluoride (PVDF)KynarFlex 2801
N-Methyl-2-Pyrrolidinone Anhydrous (NMP), 99.5%Sigma Aldrich328634
CNERGY Super C-65Timcal
Electrolyte (1.0 M LiPF6 in EC/DEC, 1:1 by vol.)BASF50316366
Lithium Titanate (Li4Ti5O12)Sigma Aldrich702277
KS6 Synthetic GraphiteTimcal
Lithium Metal RibbonSigma Aldrich3200800.75 mm thickness
Epoxy MultipurposeLoctite
Electrical TapeScotch 3M Super 88 
Isopropyl Alcohol (IPA), ACS reagent, ≥99.5%Sigma Aldrich190764

Odniesienia

  1. Whittingham, M. S. Lithium batteries and cathode materials. Chemical Reviews. 104 (10), 4271-4301 (2004).
  2. Schipper, F., Aurbach, D. A Brief Review: Past, Present and Future of Lithium Ion Batteries. Russian Journal of Electrochemistry. 52 (12), 1095-1121 (2016).
  3. Stein, M., Chen, C. F., Robles, D. J., Rhodes, C., Mukherjee, P. P.

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Three electrode Coin CellLithium ion BatteriesAnodeCathodeDegradation PhenomenaElectrochemical PropertiesReference ElectrodeSlurry PreparationPVDFNMPLithium TitanateSynthetic GraphiteConductive AdditiveHigh Shear MixingElectrode DryingArgon Glove BoxLithium DiskStainless Steel Spacer

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone