JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here, we present a protocol for the preparation and the stereotaxic administration of allogeneic human lymphocytes in immunodeficient mice carrying orthotopic human primary brain tumors. This study provides a proof-of-concept for both the feasibility and the antitumor efficacy of intrabrain-delivered cellular immunotherapies.

Streszczenie

Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain cancer in adults, is generally associated with a poor prognosis, and scarce efficient therapies have been proposed over the last decade. Among the promising candidates for designing novel therapeutic strategies, cellular immunotherapies have been targeted to eliminate highly invasive and chemo-radioresistant tumor cells, likely involved in a rapid and fatal relapse of this cancer. Thus, administration(s) of allogeneic GBM-reactive immune cell effectors, such as human Vϒ9Vδ2 T lymphocytes, in the vicinity of the tumor would represents a unique opportunity to deliver efficient and highly concentrated therapeutic agents directly into the site of brain malignancies. Here, we present a protocol for the preparation and the stereotaxic administration of allogeneic human lymphocytes in immunodeficient mice carrying orthotopic human primary brain tumors. This study provides a preclinical proof-of-concept for both the feasibility and the antitumor efficacy of these cellular immunotherapies that rely on stereotactic injections of allogeneic human lymphocytes within intrabrain tumor beds.

Wprowadzenie

GBM (WHO grade IV astrocytoma), is the most frequent and aggressive primary brain cancer in adults. In spite of aggressive treatments that combine surgery and radio-chemotherapy, GBM remains associated with an extremely poor prognosis (median survival of 14.6 months and a 2-year-mortality > 73%)1. This evidences that few efficient therapeutic advances have been validated over the last decade2. Among candidates for the design of more effective therapeutic strategies3,4,5, immunotherapies6 are currently explored to track and eliminate highly invasive and radio/chemo-resistant tumor cells, suspected for their key contribution to rapid and fatal tumor relapse7. Various potential immunological targets were identified and proposed for immunotherapies, involving natural or modified αβ or ϒδ T lymphocytes such as GBM-specific tumor antigens or stress-induced molecules8,9,10. The possibility to administrate selected GBM-reactive immune cell effectors represents a unique opportunity to deliver elevated amounts of effector lymphocytes directly into the site of residual malignancy. To support this strategy, we have recently shown that models based on immunodeficient mice carrying orthotopic primary human GBM xenografts faithfully recapitulate the development of brain tumors in GBM patients9,11. Moreover, these models were used to demonstrate the strong antitumor efficiency of adoptively transferred allogeneic human Vϒ9Vδ2T lymphocytes.

This protocol describes the critical experimental steps for achieving stereotactic immunotherapies of brain tumors, such as GBM, based on the adoptive transfer of allogeneic T lymphocytes. The article shows: (i) the amplification of therapeutic allogeneic immune effector T lymphocytes, such as human Vϒ9Vδ2T lymphocytes; (ii) the preparation of these effector T lymphocytes for injection; (iii) the procedure for stereotactic administration within the brain, near the tumor. This article also provides insight into the behavior of these cellular effectors after stereotactic injection.

The therapeutic approach presented here is based on the injection of 20 x 106 effector cells per dose for each brain tumor-bearing immunodeficient mouse. An initial in vitro expansion step is required to produce large quantities of immune cells. Therefore, non-specific cell expansions are performed using phytohemagglutinin (PHA-L) and irradiated allogeneic feeder cells: peripheral-blood mononuclear cells (PBMCs) from healthy donors and Epstein Barr Virus (EBV)-transformed B-lymphoblastoid cell lines (BLCLs), derived from PBMCs by in vitro infection with EBV-containing culture supernatant from the Marmoset B95-8 cell line, in the presence of 1 µg/mL cyclosporin-A.

GBM-reactive effector immune cells are compared and selected from in vitro assays9. These effector cells are activated and amplified using standard protocols, according to their nature (e.g., human Vγ9Vδ2 T lymphocytes9 or human anti-herpes virus αβ T lymphocytes12) with a minimum purity of > 80%, as routinely checked by cytometric analysis. The cell expansion procedure detailed below applies to various human lymphocyte subsets.

Protokół

The following procedure involving animal subjects was performed according to institutional guidelines (Agreement #00186.02; regional ethics committee of the Pays de la Loire [France]). Human PBMCs were isolated from the blood collected from informed healthy donors (Etablissement Français du Sang Nantes, France). All steps are performed under sterile conditions.

1. Non-specific Expansion of Cytotoxic Effector T Lymphocytes

  1. Prepare and irradiate feeder cells at 35 Gy. For the stimulation of 2 x 105 - 4 x 105 effector cells, prepare 10 x 106 PBMCs and 1 x 106 BLCLs from three distinct, healthy donors.
  2. Resuspend both feeder cells and effector cells in 15 mL of RPMI supplemented with 10% heat-inactivated FCS, 2 mM L-glutamine, penicillin (100 IU/mL), and streptomycin (0.1 µg/mL) and 300 IU/mL recombinant IL-2.
  3. Add PHA-L at a final concentration of 1 µg/mL, carefully mix, and distribute 150 µL of the cell suspension per well in 96-well U-bottomed plates.
  4. Incubate at 37 °C and with 5% CO2 in a humidified atmosphere.
  5. Daily check the plate until large cell clumps form in the culture wells (~day 7).
  6. Transfer the cells into a culture flask at 1 x 106 cells/mL in fresh culture medium.
  7. Determine the total cell number by counting (2x a week) and maintain them at 1 x 106 cells/mL in fresh culture medium.
    NOTE: Effector immune cells should be ready for the therapeutic administration at a resting state (usually 3 weeks after initial amplification stimulus). The purity and the reactivity of these effector cells should be checked prior to in vivo injections (e.g., with in vitro assays).

2. Pre-operative Effector Cells Preparation

  1. After checking the effector cell count, collect the effector cells in a 50-mL tube by centrifugation (300 x g for 5 min).
    NOTE: To compensate for any loss, prepare an excess of cells (e.g., 50 x 106).
  2. Carefully remove the supernatant and resuspend the cells in 15 mL of sterile PBS and centrifuge for 5 min at 300 x g to perform the wash.
  3. Carefully and completely remove the supernatant and then resuspend the cell pellet in 1 mL of sterile PBS.
  4. Transfer the resuspended cells in a 1.5-mL microtube for centrifugation at 300 x g for 5 min.
  5. Carefully and completely remove the supernatant by pipetting slowly.
  6. Resuspend the cell pellet in 8 µL of sterile PBS per mouse.
    NOTE: This is a critical step.
  7. Measure the volume of the cell suspension by using a micropipette. If necessary, add sterile PBS (20 x 106 cells in 15 µL of PBS per dose) and mix carefully.
  8. Check, by using a micropipette, that the final volume per mouse is between 15 and 20 μL (imperatively < 20 µL).
  9. Keep the cells on ice until stereotactic injection.
    NOTE: More than 3-h timepoints were not tested.

3. Stereotactic Injection

  1. Equipment set-up
    1. Assemble and calibrate a small animal stereotactic frame according to the manufacturer's instructions to ensure the accuracy of intracranial injections (e.g., syringe size, desired volume, and rate of injection).
      NOTE: A slow infusion rate is recommended (i.e., 2 - 3 µL/min).
    2. Install the material under a microbial safety cabinet (MSC) to maintain the sterility of the instruments and to protect the mice from infections.
      NOTE: Place" isothermal blocs" in a water bath at 37 °C. This system limits the hypothermia of mice during the surgery. Heating pads, which are necessary for post-procedural care, must be used during the continuous temperature monitoring.
  2. Pre-operative animal preparation
    1. Anesthetize a mouse with an intraperitoneal injection of ketamine (10 mg/mL) and xylazine (0.1 mg/mL) at 10 µL/g of body weight of the mouse.
    2. Perform a toe pinch test to ensure the complete anesthesia and analgesia of the animal.
      NOTE: Any movement is an indication of non-deep analgesia and, if that occurs, a few more minutes are required before repeating the operation.
    3. Once the mouse is properly anesthetized, use scissors to remove the fur from the surgical site (between the two ears, up to the nose).
  3. Pre-operative cell preparation
    1. Carefully resuspend the cells with a pipette (several times) prior to each injection to prevent any cell clumping.
    2. Carefully draw the required cell suspension volume (15 - 20 µL) into the 22-G microsyringe to avoid the aspiration of bubbles.
      NOTE: This cell-loading step into the microsyringe is important to minimize variances in injected volumes. Reload cells for each individual injection between procedures to prevent any cell clumping and to ensure an even number of effector cells administration in the cohort.
    3. Then, place the syringe into the adapted syringe pump.
  4. Procedural care
    1. Disinfect the surgical site with swabs soaked in povidone-iodine 5% solution at least 3x.
    2. Place a lubricating ophthalmic ointment in the mouse's eyes to prevent any drying of the corneas.
    3. Position the anesthetized mouse on the stereotactic frame, on a warm isothermal block covered with a sterile plastic wrap to maintain the mouse's temperature during surgery and limit the mortality.
      NOTE: The mouse's nose and teeth should be appropriately positioned above the tooth bar, to ensure adequate respiratory flow during the procedure.
    4. Once the mouse is positioned above the tooth bar, tighten the ear bars firmly under the mouse's ears to immobilize the head.
      NOTE: Be careful to not damage the eardrums or to compromise the respiration.
    5. Make a 1 - 2 cm midline sagittal skin incision with sterile scissors along the upper part of the cranium from anterior to posterior to expose the skull.
    6. Identify the intersection of the sagittal and coronal sutures (Bregma) to serve as landmarks for stereotactic localization prior to the injection (shown in Figure 1).
    7. Place the microsyringe above this point.
    8. Move the microsyringe 2 mm right lateral and 0.5 mm anterior of the Bregma.
    9. Using a microdrill, make a small hole in the skull with a sterile drill bit at predetermined coordinates. Be careful to remain superficial in order to avoid any traumatic injury of the brain.
      NOTE: In this protocol, immune cells were injected within an established tumor (one week after tumor cell injection). The skin should be reopened (scar) and the injection is performed at the same coordinates used for the tumor cell implantation (the hole is generally still present up to 2 weeks after the injection). Coordinates were selected for injecting tumor and effector cells in the brain parenchyma13,14.
  5. Injection of immune effector cells
    1. Carefully insert the microsyringe into the drilled hole and, moving slowly, forward the needle 3 mm down in the dura and then backward 0.5 mm to a final depth of 2.5 mm prior to injecting the effector cells.
    2. Run the effector cell injection at 2 - 3 µL/min and monitor the mice all along the injection time.
    3. Once the injection is complete, withdraw the needle for only 1 mm and keep the microsyringe in place for one additional minute before slowly withdrawing completely the microsyringe, to prevent any leakage from the infusion site.
      NOTE: Following the removal of the animal from the stereotactic device, immediately clean the injection equipment for upcoming experiments.
  6. Post-operative care and follow-up of mouse
    1. Remove the animal from the stereotactic frame and immediately apply povidone-iodine 5% solution on the incision site and close the skin with an appropriate surgical suture.
    2. Apply 2% lidocaine gel directly on the wound and administer 0.15 µg/g of buprenorphine by a subcutaneous injection for post-procedural analgesia.
    3. Place back the anesthetized mouse to its cage above a heating pad set to 37 °C to maintain an appropriate mouse body temperature and to avoid any hypothermia.
      NOTE: Separate housing is not necessary.
    4. Monitor the mouse until it is fully recovered from anesthesia and transfer it to a housing room.
      NOTE: To date, this protocol is well supported as few unforeseen complications have occurred (< 5% of injected mice).
    5. Daily monitor the mice and euthanize them when any declining health signs are observed (e.g., hunched posture, reduced mobility, prostration, or significant body weight loss [≥ 15%]).

Wyniki

This study describes the strategy of adoptive transfers of cellular immune effector cells within the brain of tumor-carrying mice, based on stereotactic injections performed directly within the tumor bed.

To minimize any risk of brain injury associated with a large injection volume, the effector cell suspension needs to be concentrated (20 x 106 cells in 15 - 20 µL of PBS). To check whether this cell concentratio...

Dyskusje

An adoptive transfer of selected native or engineered immune effector cells represents a promising approach to efficiently treat tumors, such as infiltrative brain cancers, taking care of limiting reactivities against non-transformed cells15,16,17,18. However, the central nervous system, which comprises the brain, has a particular immune status, notably due to the existence of the blood-brain b...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors thank the staff of the University Hospital animal facility (UTE) of Nantes for animal husbandry and care, the cellular and tissular imaging core facility of Nantes University (MicroPICell) for imaging, and the Cytometry facility (Cytocell) from Nantes for their expert technical assistance. This work was funded by INSERM, CNRS, Université de Nantes, Institut National du Cancer (INCa#PLBio2014-155), Ligue Nationale contre le Cancer (AO InterRegional 2017), and the European consortium ERA-Net Transcan2 (Immunoglio). The team is funded by the Fondation pour la Recherche Medicale (DEQ20170839118). This work was realized in the context of the LabEX IGO and the IHU-Cesti programs, supported by the National Research Agency Investissements d'Avenir via the programs ANR-11-LABX-0016-01 and ANR-10-IBHU-005, respectively. The IHU-Cesti project is also supported by Nantes Metropole and the Pays de la Loire Region. The authors thank Chirine Rafia for providing help in correcting the manuscript.

Materiały

NameCompanyCatalog NumberComments
PBMCsfrom 3 different healthy donors
BLCLsfrom 3 different donors
Roswell Park Memorial Institute medium (RPMI)Gibco31870-025
FCSDutscherS1810-500
L-glutamineGibco25030-024
penicillin/streptomycinGibco15140-122
IL-2Novartisproleukin
PHA-LSigmaL4144
Stereotaxic frameStoelting Co.51600
Mouse adaptator for stereotaxic frame  Stoelting Co.51624
microsyringe pump injector WPIUMP3-4
NanoFil SyringeWPINF34BV-2
NSG miceCharles RiverNSGSSFE07S
KetamineMerialImalgène 1000
XylazineBayerRompur 2%
ScissorsWPI201758
ForcepsWPI501215
OmniDrill 115/230VWPI503598
Vicryl 4-0EthiconVCP397H
XylocaineAstrazeneca3634461

Odniesienia

  1. Stupp, R., Roila, F. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Annals of Oncology. 20 Suppl 4, 126-128 (2009).
  2. Weller, M., Cloughesy, T., Perry, J. R., Wick, W. Standards of care for treatment of recurrent glioblastoma--are we there yet?. Neuro-Oncology. 15 (1), 4-27 (2013).
  3. Chen, S. H., Shine, H. D., Goodman, J. C., Grossman, R. G., Woo, S. L. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proceedings of the National Academy of Sciences of the United States of America. 91 (8), 3054-3057 (1994).
  4. Choi, P. J., Tubbs, R. S., Oskouian, R. J. Emerging Cellular Therapies for Glioblastoma Multiforme. Cureus. 10 (3), e2305 (2018).
  5. Zhu, L., et al. Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells. Frontiers in Immunology. 9, 824 (2018).
  6. Chung, D. S., Shin, H. J., Hong, Y. K. A new hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. Journal of Immunology Research. 2014, 326545 (2014).
  7. Vauleon, E., Avril, T., Collet, B., Mosser, J., Quillien, V. Overview of cellular immunotherapy for patients with glioblastoma. Clinical and Developmental Immunology. 2010, (2010).
  8. Brown, C. E., et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. The New England of Journal of Medicine. 375 (26), 2561-2569 (2016).
  9. Jarry, U., et al. Stereotaxic administrations of allogeneic human Vgamma9Vdelta2 T cells efficiently control the development of human glioblastoma brain tumors. Oncoimmunology. 5 (6), e1168554 (2016).
  10. Dutoit, V., et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain. 135 (Pt 4), 1042-1054 (2012).
  11. Joalland, N., et al. IL-21 Increases the Reactivity of Allogeneic Human Vgamma9Vdelta2 T Cells Against Primary Glioblastoma Tumors. Journal of Immunotherapy. 41 (5), 224-231 (2018).
  12. Clemenceau, B., et al. Effector memory alphabeta T lymphocytes can express FcgammaRIIIa and mediate antibody-dependent cellular cytotoxicity. The Journal of Immunology. 180 (8), 5327-5334 (2008).
  13. Abdelwahab, M. G., Sankar, T., Preul, M. C., Scheck, A. C. Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas. Journal of Visualized Experiments. (57), e3403 (2011).
  14. Jarry, U., et al. Treg depletion followed by intracerebral CpG-ODN injection induce brain tumor rejection. Journal of Neuroimmunology. 267 (1-2), 35-42 (2014).
  15. June, C. H., O'Connor, R. S., Kawalekar, O. U., Ghassemi, S., Milone, M. C. CAR T cell immunotherapy for human cancer. Science. 359 (6382), 1361-1365 (2018).
  16. Baruch, E. N., Berg, A. L., Besser, M. J., Schachter, J., Markel, G. Adoptive T cell therapy: An overview of obstacles and opportunities. Cancer. 123 (S11), 2154-2162 (2017).
  17. Bryant, N. L., et al. Characterization and immunotherapeutic potential of gammadelta T-cells in patients with glioblastoma. Neuro-Oncology. 11 (4), 357-367 (2009).
  18. Pereboeva, L., Harkins, L., Wong, S., Lamb, L. S. The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation. Cancer Immunology, Immunotherapy. 64 (5), 551-562 (2015).
  19. Bailey, S. L., Carpentier, P. A., McMahon, E. J., Begolka, W. S., Miller, S. D. Innate and adaptive immune responses of the central nervous system. Critical Reviews in Immunology. 26 (2), 149-188 (2006).
  20. Louveau, A., et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 523 (7560), 337-341 (2015).
  21. Menei, P., et al. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma: a pilot study. Cancer. 86 (2), 325-330 (1999).
  22. Menei, P., et al. Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma. Cancer. 100 (2), 405-410 (2004).
  23. Salot, S., et al. Large scale expansion of gamma 9 delta 2 T lymphocytes: Innacell gamma delta cell therapy product. Journal of Immunological Methods. 326 (1-2), 63-75 (2007).
  24. Bennouna, J., et al. Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunology, Immunotherapy. 57 (11), 1599-1609 (2008).
  25. Singh, S. K., et al. Identification of human brain tumour initiating cells. Nature. 432 (7015), 396-401 (2004).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Glioblastoma MultiformeCellular ImmunotherapyCytotoxic Immune CellsOrthotopic XenograftsStereotactic InjectionGBM reactive Effector CellsNSG Mouse ModelTumor MicroenvironmentAdoptive Cell Transfer

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone