Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a protocol for generating neutrophil extracellular traps (NETs) and operating NETQUANT, a fully automatic software option for quantification of NETs in immunofluorescence images.
Neutrophil extracellular traps (NETs) are web-like antimicrobial structures consisting of DNA and granule derived antimicrobial proteins. Immunofluorescence microscopy and image-based quantification methods remain important tools to quantitate neutrophil extracellular trap formation. However, there are key limitations to the immunofluorescence-based methods that are currently available for quantifying NETs. Manual methods of image-based NET quantification are often subjective, prone to error and tedious for users, especially non-experienced users. Also, presently available software options for quantification are either semi-automatic or require training prior to operation. Here, we demonstrate the implementation of an automated immunofluorescence-based image quantification method to evaluate NET formation called NETQUANT. The software is easy to use and has a user-friendly graphical user interface (GUI). It considers biologically relevant parameters such as an increase in the surface area and DNA:NET marker protein ratio, and nuclear deformation to define NET formation. Furthermore, this tool is built as a freely available app, and allows for single-cell resolution quantification and analysis.
Neutrophils are crucial mediators of innate host defense responses against a wide variety of microbial pathogens1. They execute their antimicrobial functions by releasing their granules containing a wide array of antimicrobial proteins2, producing reactive oxygen species (ROS) and hypochlorite1, and through phagocytosis3. In addition, Brinkmann et al.4 described neutrophil extracellular traps (NETs) as a novel mechanism by which neutrophils trap and eliminate invading pathogens. Since their discovery a little over a decade ago4, NETs have been implicated in a wide variety of infectious5,6 and non-infectious7 morbidities. NET formation is an active process and results in the extrusion of chromatin DNA coated with granule-derived antimicrobial proteins8. Some of the key changes in cellular and nuclear morphology associated with NET formation include the loss of nuclear morphology, chromatin decondensation, mobilization of granule proteins from cytoplasm to the nucleus and an increase in the nuclear and cellular diameter8,9.
The web-like NETs, which may appear as diffuse structures slightly larger than the cell or as structures several times larger than a single neutrophil are considered as indicators of NETosis5,10. Using fluorescence microscopy, NETs can be detected by probing DNA with a fluorescent probe such as 4',6-diamidino-2-phenylindole (DAPI) and by immunofluorescence staining against NET-bound proteins such as neutrophil elastase. Quantification of overlapping areas of staining for DNA and NET-bound proteins determines the total area under NETs in an image11.
A number of image analysis options are available to perform fluorescence image-based quantification of NETs11,12. But these software options present limitations in not being user-friendly and/or fully automated. In this article, we demonstrate the operation of NETQUANT13, a freely available app that can perform unbiased fully automated immunofluorescence microscopy image-based NET quantification. The app has a user friendly graphical interface (GUI) and can perform single-cell analysis. The software quantifies NETosis in an image by detecting the morphological changes in the area of DNA-NET-bound marker, chromatin decondensation associated deformation of the nucleus and increase in the DNA:NET-bound protein ratio. Taken together, the multiple NET definition criteria allows for stringent NET quantification across several data sets in an unbiased fashion.
The ethics committee of Lund University approved the collection of venous blood from healthy volunteers in accordance with the Declaration of Helsinki (2013/728). All volunteers provided their written informed consent.
1. Isolation of Peripheral Blood Neutrophils using Density-Gradient Centrifugation
2. Preparation of Coverslips and Stimulation of Neutrophils
3. Visualization of NETs
4. Analysis and Quantification of NETs using NETQUANT
Note: NETQUANT can be downloaded by clicking the installation file found on the Zenodo Github archive or the Nordenfelt Lab website (https://nordlab.med.lu.se/?page_id=34).
5 x 105 neutrophils/mL were seeded onto coverslips placed in a 12-well plate and stimulated with either 20 nM PMA or left unstimulated for 150 min. The samples were then stained using primary rabbit anti-human neutrophil elastase antibodies, secondary goat anti-rabbit fluorophore conjugated antibodies and DAPI - a fluorescently labelled dye that stains DNA (See the Table of Materials for details). A minimum of 5 images were then acquired using an epifluorescenc...
NET formation is a relatively recent addition to the diverse neutrophil armamentarium4 and there has been a noticeable surge of interest to study the implication of NETs in a wide array of research areas5,7,14,15. Acquisition of images using Immunofluorescence microscopy and subsequent image-based quantification is a widely used method to quantify NETs. This approach has...
TM and PN have a patent pending related to the algorithms used in NETQUANT.
The work was funded by the Crafoord Foundation (TM and PN), Swedish Government Research grant (PN, TM), Swedish research council (PN) and Groschinsky Foundation (TM, PN).
Name | Company | Catalog Number | Comments |
BD Vacutainer Heparinised plastic tubes | BD Biosciences | 367885 | |
Lymphoprep | Axis-Shield | 114547 | |
RPMI-1640 with L-Glutamine | Gibco | 11835-030 | |
50mL conical flasks | Sarstedt | 62.547.004 | |
15mL conical flasks | Sarstedt | 62.554.002 | |
12-well Tissue culture plates | Falcon | 10626491 | |
#1 Coverslips 10mm | Menzel Glaser | CS10100 | |
Glass slides | Menzel Glaser | 631-0098 | |
Primary anti-human elastase | DAKO | DAKO rabbit 1373, contract immunization | |
Secondary fluorophore conjugated goat anti-rabbit | Life technologies | A-11072, A-11070 | |
PROLONG-Gold Antifade reagent with DAPI | Life technologies | P36930 | Mounting medium |
Goat serum | Sigma-Aldrich | G9023 | |
Phorbol 12-myristate 13-acetate (PMA) | Sigma-Aldrich | 79346 | |
Paraformaldehyde | Sigma-Aldrich | 158127 | |
Triton X-100 | Sigma-Aldrich | T8787 | |
Nikon Ti-E Epifluorescence microscope | Nikon | ||
CCD camera | Andor Zyla | ||
Plan Apochromat 20x, 40x objectives | Nikon | ||
Windows 10 | Microsoft | Operating system | |
macOS Sierra 10.12 | Apple | Operating system | |
MATLAB | Mathworks |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone