Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we describe the development of a clinically relevant murine model of liver cancer recapitulating the typical immune features of hepatocellular cancer (HCC).
The absence of a clinically relevant animal model addressing the typical immune characteristics of hepatocellular cancer (HCC) has significantly impeded elucidation of the underlying mechanisms and development of innovative immunotherapeutic strategies. To develop an ideal animal model recapitulating human HCC, immunocompetent male C57BL/6J mice first receive a carbon tetrachloride (CCl4) injection to induce liver fibrosis, then receive histologically-normal oncogenic hepatocytes from young male SV40 T antigen (TAg)-transgenic mice (MTD2) by intra-splenic (ISPL) inoculation. Androgen generated in recipient male mice at puberty initiates TAg expression under control of a liver-specific promoter. As a result, the transferred hepatocytes become cancer cells and form tumor masses in the setting of liver fibrosis/cirrhosis. This novel model mimics human HCC initiation and progression in the context of liver fibrosis/cirrhosis and reflects the most typical features of human HCC including immune dysfunction.
Hepatocellular cancer (HCC) is the most rapidly increasing type of cancer in the United States (US)1,2,3. Every year, approximately 850,000 new cases are diagnosed4,5 and 700,000 patients die from this lethal disease6,7,8,9,10, making it the second-highest cause of cancer-related death worldwide. Management of HCC includes surgical resection, transplantation, ablation, chemoembolization, or systemic therapies, such as sorafenib11. Early diagnosis and management with surgical resection or transplantation have the highest overall survival benefit4. Unfortunately, the majority of patients present at a later stage and require management with ablation, chemoembolization or sorafenib12. Sorafenib, a receptor tyrosine kinase inhibitor (RTKI), was approved by the Food and Drug Administration in 2008 as the only systemic drug therapy available for treating unresectable HCC. Although the drug only provides a modest increase in overall survival, from 7.9 to 10.7 months13, it provided a new therapeutic strategy that could be utilized to manage HCC.
Manipulating the immune system to eliminate established cancers is a rapidly growing field in cancer research14. Immune checkpoint studies have considerably advanced immunotherapeutic drug development in cancer treatment15,16. The FDA approved the use of antibodies (Abs) against cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and its ligand PD-L1 for the treatment of melanoma, lung cancer, head and neck cancer, and bladder cancer17,18,19,20. Clinical trials of monotherapy or combination therapy using one or multiple antibodies against PD-1, PD-L1, or CTLA-4 for the treatment of advanced HCC are ongoing21,22,23, and some trials have shown favorable results. In 2017, the FDA granted accelerated approval for anti-PD-1 antibody to treat HCC patients, who are resistance to sorafenib, but the overall response rate of this therapy is only 14.3%. Other strategies have not been translated into clinical practice at this time24,25. Overcoming tumor-induced profound immune tolerance to improve immune checkpoint therapy26; predicting efficacy of immune checkpoint therapy; preventing immune-related adverse events; optimizing administration route, dosage, and frequency; and finding effective combinations of therapies27,28,29 all remain extremely challenging tasks.
There are several conventional approaches used to induce HCC in mouse models currently and are utilized depending on the investigator's particular research question30. Chemically-induced HCC mouse models with genotoxic compounds mimic injury-induced malignancy. Xenograft models through either ectopic or orthotopic implantation of HCC cell lines are suitable for drug screening. A number of genetically modified mice have been engineered to investigate the pathophysiology of HCC. Transgenic mice expressing viral genes, oncogenes and/or growth factors allow the identification of pathways involved in hepatocarcinogenesis. Due to inherent limitations, these models do not recapitulate the typical immune characteristics seen in human HCC, which has significantly impeded elucidation of the underlying mechanisms and development of innovative immunotherapeutic strategies14,15. We recently created a clinically relevant murine model. This novel model not only mimics human HCC initiation and progression but also reflects most typical features of human disease including immune dysfunction. We have characterized its biological and immunological characteristics. Leveraging this novel model, we have explored various immunotherapeutic strategies to treat HCC31,32,33,34,35,36,37. This unique platform allows us to study mechanisms of tumor-induced immunotolerance and to develop proof-of-concept therapeutic strategies for HCC toward eventual clinical translation.
NOTE: All the procedure including animal subjects have been approved by the IACUC at the University of Missouri. All mice received humane care according to the criteria outlined in the "Guide for the Care and Use of Laboratory Animals". The following procedure for cell isolation and inoculation should be performed in a hood. All performers should wear the standard personal protective equipment for handling of the mice and tissue.
1. Induction of Liver Fibrosis and Cirrhosis with IP Injection of Carbon Tetrachloride (CCl4)
NOTE: See Figure 1. (CCl4 is highly hazardous reagent, it should be handled carefully and with wearing chemical-resistant gloves)
2. Isolating Tag-transgenic Hepatocytes from Line MTD2 mice
NOTE: See Table 1 for solution recipes.
10x Earle’s Balanced Salt Solution without Ca or Mg (EBSS without Ca or Mg) | 4 g KCl 68 g NaCl 1.4 g NaH2PO4·H2O 10 g dextrose Add water to 1 liter, pH to 4.32 Pass through filter |
Solution 1 | 20 mL 10x EBSS without Ca or Mg 44 g NaHCO3 1.33 mL 1.5M Hepes 10 mL of 10 mL EGTA Add water to 200 mL |
Solution 2 | 100 mL 10x EBSS 2.2 g NaHCO3 6.67 mL 1.5 M Hepes Add water to 1 liter |
0.75% collagenase solution | 15 mg collagenase type 1 20 mL of solution 2 |
Complete Medium | 2 RPMI 50 mL FBS 5 mL 100x Penicillin-Streptomycin |
Table 1: Solution recipes.
3. Inoculating the hepatocytes from MTD2 mice to the liver of wild type C57BL/6J mice by ISPL injection
Oncogenic hepatocytes isolated from TAg-transgenic mice (Figure 2) were seeded in the liver of wild type mice by intra-splenic injection (Figure 3). The transplanted hepatocytes successfully and reliably grew orthotopic HCC tumors (Figure 4) with tumor specific antigen SV40 TAg (Figure 5) in the setting of hepatic inflammation and fibrosis (Figure 1).
With this protocol, we have established a reliable and reproducible murine model of HCC that mimics human HCC initiation and progression. Clinically, many risk factors successively induce liver injury, liver fibrosis, cirrhosis and the final stage of HCC. In our protocol, IP injection of CCl4 is used to first produce liver fibrosis in wild type mice, which allows the subsequent oncogenic hepatocytes to form the tumors in the setting of liver fibrosis. We found that tumor formation occurred most successfully in...
There are none to declare.
This work is supported by NIH/NCI R01 CA164335-01A1 (K. F. Staveley-O’Carroll, PI) and NIH/NCI R01CA208396 (Mark Kester, Guangfu Li, Kevin F. Staveley-O’Carroll).
Name | Company | Catalog Number | Comments |
Anesthesia machine | VETEQUIP | IMPAC6 | anesthesia machine for surgery |
Butterfly needle | BD | 8122963 | Needle used for liver perfusion |
C57BL/6 mice | Jackson Lab | 000664 | mice used in prototol |
Carprofen | CRESCENT CHEMICAL | 20402 | carprofen for pain release |
Cell Strainer | CORNING | REF 431751 | Cell strainer, 70µm, for hepatocytes isolation |
Centrifuge | Beckman Coulter | Allegra X-30R | centrifuge for cell isolation |
Clips | Teleflex Medical | REF 523700 | Titanium Clips for spleen |
Microscope | Zeiss | Primovert | microscope for cell observation |
Mtd2 mice | N/A | Gift from Dr. William A Held at roswell Park Cancer Institute in 2002, maintained in our lab | |
Needle | BD | REF 305109 | BD precisionglide needle, 27G x 1/2 (0.4mm x 13mm) |
Suture | ETHICON | J303H | coated VICRYL suture |
SV40 T Ag antibody | Abcam | ab16879 | anti-SV40 T-antigen antibody for IHC |
Syringe | BD | REF 309626 | 1 mL TB syringe for cell injection |
Trypan blue | SIGMA | T 8154 | Trypan blue solution for cell viability test |
Wound clips | Reflex | reflex9, Part. No. 201-1000 | stainless steel wound clips for wound close |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone