JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

A pan-lyssavirus nested reverse transcription polymerase chain reaction has been developed to detect specifically all known lyssaviruses. Validation using rabies brain samples of different animal species showed that this method has a sensitivity and specificity equivalent to the gold standard fluorescent antibody test and could be used for routine rabies diagnosis.

Streszczenie

To detect rabies virus and other member species of the genus Lyssavirus within the family Rhabdoviridae, the pan-lyssavirus nested reverse transcription polymerase chain reaction (nested RT-PCR) was developed to detect the conserved region of the nucleoprotein (N) gene of lyssaviruses. The method applies reverse transcription (RT) using viral RNA as template and oligo (dT)15 and random hexamers as primers to synthesize the viral complementary DNA (cDNA). Then, the viral cDNA is used as a template to amplify an 845 bp N gene fragment in first-round PCR using outer primers, followed by second-round nested PCR to amplify the final 371 bp fragment using inner primers. This method can detect different genetic clades of rabies viruses (RABV). The validation, using 9,624 brain specimens from eight domestic animal species in 10 years of clinical rabies diagnoses and surveillance in China, showed that the method has 100% sensitivity and 99.97% specificity in comparison with the direct fluorescent antibody test (FAT), the gold standard method recommended by the World Health Organization (WHO) and the World Organization for Animal Health (OIE). In addition, the method could also specifically amplify the targeted N gene fragment of 15 other approved and two novel lyssavirus species in the 10th Report of the International Committee on Taxonomy of Viruses (ICTV) as evaluated by a mimic detection of synthesized N gene plasmids of all lyssaviruses. The method provides a convenient alternative to FAT for rabies diagnosis and has been approved as a National Standard (GB/T36789-2018) of China.

Wprowadzenie

Rabies is a worldwide zoonotic disease caused by viruses within the genus Lyssavirus1. Lyssaviruses (family Rhabdoviridae) are single-negative-stranded RNA viruses with an approximately 12 kb genome that encodes five proteins: N, phosphoprotein (P), matrix protein (M), glycoprotein (G), and the large protein or polymerase (L). Based on nucleotide sequences of the N gene, genetic distance, and antigenic patterns, the lyssaviruses have been divided into 16 species, comprising classical rabies virus (RABV) and the rabies-related viruses (RRV): Lagos bat virus (LBV), Duvenhage virus (DUVV), Mokola virus (MOKV), European bat lyssavirus 1 (EBLV-1), European bat lyssavirus 2 (EBLV-2), Australian bat lyssavirus (ABLV), Aravan virus (ARAV), Ikoma virus (IKOV), Bokeloh bat lyssavirus (BBLV), Gannoruwa bat lyssavirus (GBLV), Irkut virus (IRKV), Khujand virus (KHUV), West Caucasian bat virus (WCBV), Shimoni bat virus (SHIBV), and Lleida bat lyssavirus (LLEBV)2. Recently, two additional lyssaviruses have been identified: Kotalahti bat lyssavirus (KBLV) isolated from a Brandt’s bat (Myotis brandtii) in Finland in 20173 and Taiwan bat lyssavirus (TWBLV) isolated from a Japanese pipistrelle (Pipistrellus abramus) in Taiwan, China in 2016–20174.

All mammals are susceptible to rabies; however, no gross pathognomonic lesions or specific clinical signs permit its identification, and diagnosis can only be made in the laboratory5. The most widely used method for rabies diagnosis is the FAT, which is considered as the gold standard by both the WHO and the OIE5,6. Nevertheless, the FAT can produce unreliable results on degraded/autolyzed brain tissue samples. Additionally, it cannot be used to assay biological fluid specimens such as cerebrospinal fluid (CSF), saliva, and urine, thereby largely precluding its employment in antemortem diagnosis7. Alternative conventional diagnostic tests, such as the rabies tissue culture infection test (RTCIT) and the mouse inoculation test (MIT), require several days6, a major drawback when a rapid diagnosis is essential.

Various molecular diagnostic tests (e.g., the detection of viral RNA by RT-PCR, the PCR–enzyme-linked immunosorbent assay [PCR-ELISA], in situ hybridization, and real-time PCR) are used as rapid and sensitive techniques for rabies diagnosis8. RT-PCR is now recommended by OIE for routine rabies diagnosis, and a heminested (hn) PCR is described in the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals to detect all lyssaviruses5. Here we describe a pan-lyssavirus nested RT-PCR, which allows the specific and sensitive detection of all 18 lyssavirus species comparable to or exceeding that obtained by the FAT. The principle of the method is an RT of the target RNA (conserved region of the lyssavirus N gene) into cDNA, followed by the amplification of the cDNA by two rounds of PCR. The cDNA undergoes the first-round PCR with outer primers to amplify an 845 bp fragment; then, the second-round PCR uses the first-round PCR product as a template to amplify a 371 bp fragment with inner primers. The two rounds of PCR significantly increase the sensitivity of the assay.

Access restricted. Please log in or start a trial to view this content.

Protokół

The use of mice in this protocol was approved by the Administrative Committee on Animal Welfare of the Institute of Military Veterinary Medicine, the Academy of Military Medical Sciences, China (Laboratory Animal Care and Use Committee Authorization, permit number JSY-DW-2010-02). All institutional and national guidelines for the care and use of laboratory animals were followed.

1. RNA Extraction

  1. Extract RNA from rabies-suspected brain tissue, skin biopsies, saliva, or CSF or from RABV-infected cell culture, using guanidinium isothiocyanate-phenol-chloroform-based extraction methods or commercially available viral RNA extraction kits. Use the prepared RNA immediately or store it at -80 °C until required.

2. Reverse Transcription of the Viral RNA

  1. Remove the RT reagents listed in Table 1 from the freezer, keep them on ice, and thaw and vortex them before use.
  2. Prepare 12 µL of RT reaction mix in a 0.2 mL PCR tube with the reagents listed in Table 1. Allow for pipetting variations by preparing a volume of master mix at least one reaction size greater than required.
  3. Add 8 µL sample, positive control RNA or negative control to the RT reaction mix within a PCR workstation in a template room. The RT positive control is RNA extracted from the cell culture infected with fixed RABV strain CVS-11 (challenge virus standard-11) and stored at -80 °C. The negative control contains RNase-free ddH2O.
  4. Mix the contents of the RT tubes by vortexing; then, centrifuge briefly.
  5. Load the reaction tubes into a thermal cycler. Set up the cDNA synthesis program with the following conditions: 42 °C for 90 min, 95 °C for 5 min, and 4 °C on hold. Set the reaction volume to 20 µL. Start the RT run.

3. First-round PCR

  1. Keep the PCR reagents listed in Table 2 on ice in a clean room until use; then, thaw and vortex them.
  2. Prepare the first-round PCR mix in a 0.2 mL PCR tube with the reagents listed in Table 2.
  3. Add a 2 µL sample of cDNA or plasmid into the first-round PCR mix within a PCR workstation in a template room. The PCR positive control is CVS-11 cDNA prepared as mentioned in step 2.3 for the above RT method. The PCR negative control is ddH2O.
  4. Transfer the sealed tubes to a PCR thermal cycler and cycle using the parameters listed in Table 3.

4. Second-round PCR

  1. Prepare the second-round PCR mix in a 0.2 mL PCR tube using the reagents listed in Table 4.
  2. Add 2 µL of first-round PCR product into the second-round PCR mix. In addition, include ddH2O as a negative control of the second-round PCR.
  3. Perform PCR thermal cycling using the same parameters as given in step 3.4.

5. Analysis of the PCR Products by Electrophoresis on Agarose Gels

  1. Prepare a 1.5% agarose gel by adding 1.5 g of agarose to 100 mL of Tris-acetate-EDTA (TAE) and dissolving it thoroughly by heating it in a microwave oven.
  2. Add ethidium bromide (EB) (at a final concentration of 0.01%) or another commercial EB substitution. Pour the gel into the mold and leave it to solidify at ambient temperature for at least 30 min.
  3. Prepare the loading samples by mixing 5 µL of each PCR product with 1 µL of 6x loading buffer.
  4. Load the samples and suitable DNA marker separately into the wells and run the gel for approximately 30-45 min at 120 V until the dye line is approximately 75%-80% down the gel.
  5. Turn off the power, disconnect the electrodes from the power source, and then, carefully remove the gel from the gel box.
  6. Use a UV gel documenting device to visualize and photograph the DNA fragments.

6. Characterization of Nested RT-PCR

  1. 6.1. Specificity and sensitivity for the detection of 18 lyssaviruses plasmids
    1. Order 18 commercial plasmids containing the full N gene of each lyssavirus (16 ICTV species and two novel species) for the PCR.
    2. Calculate the copy number of the plasmid using Avogadro’s number (NA) and the following formula.
      [(g/µL plasmid DNA)/(plasmid length in bp x 660)] x 6.022 x 1023 = number of molecules/µL
    3. Prepare stock solutions (2.24 x 109 molecules/µL) of all 18 plasmids in ddH2O.
    4. Perform nine 10-fold serial dilutions of all 18 plasmids in ddH2O. Dilute 10 µL of each plasmid stock with 90 µL of ddH2O. Vortex and centrifuge briefly.
    5. Perform PCR amplification as described in sections 3-5.
    6. Analyze the specificity and sensitivity of the nested PCR by detecting a series of lyssavirus plasmids.
  2. Determination of the detection limit
    1. Adjust the titer of the rabies virus strain CVS-11 cell culture to 105.5 TCID50/mL (virus titer determined according to the OIE Manual)5.
    2. Perform five 10-fold serial dilutions of CVS-11 (stock solution is 105.5 TCID50/mL) as described in step 6.1.4.
    3. Perform the RNA extraction and nested RT-PCR amplification procedures of all viral dilutions as described in sections 1-5.
  3. Comparison of the nested RT-PCR with the "gold standard" FAT
    1. Test all clinical samples by nested RT-PCR, and then, confirm the results with the FAT5 and N gene sequencing9.
    2. Use normalized data for a statistical analysis with SAS 9.1. Use the kappa test and McNemar’s chi-squared test for a statistical comparison of the diagnostic tests (SAS command: proc freq; table/agree). Calculate confidence intervals assuming abinomial distribution.
  4. Evaluation of the efficacy in testing degraded samples
    1. Expose two confirmed clinical brain tissue samples of rabid dogs at 37 °C.
    2. Assay the two samples on each day of exposure at 37 °C by nested RT-PCR, the FAT, and the MIT5.

Access restricted. Please log in or start a trial to view this content.

Wyniki

Results of nested RT-PCR to detect 18 lyssavirus species are shown in Figure 1. All PCR positive controls showed the expected 845 bp in the first- and 371 bp in the second-round amplifications with no band in the negative control. All 18 lyssaviruses produced the expected 845 and/or 371 bp bands, indicating that the nested RT-PCR detected all 18 lyssaviruses. Sixteen lyssaviruses plasmids had efficient amplification in two rounds of PCR, but two, namely ARAV and IKOV, had amplification in ei...

Access restricted. Please log in or start a trial to view this content.

Dyskusje

Currently, RABV is a major lyssavirus responsible for nearly all human and animal rabies in China, as well as in other countries. In addition, an IRKV variant was first identified from a Murina leucogaster bat in the Jilin province in Northeast China in 201210, and it has been reported to cause a dog’s death in the Liaoning Province in 201711. Most recently, a novel lyssavirus, TWBLV, was also identified from a Japanese pipistrelle bat in Taiwan, Chi...

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The study was supported by the National Key Research and Development Plan (Grant no. 2016YFD0500401) and the National Natural Science Foundation of China (Grant no. 31302043).

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
50 × TAEVariousVarious
6 × loading bufferTakaRa9156
AgaroseUS Everbright® IncA-2015-100g
ddH2OVariousVarious
DL 2,000 MarkerTakara3427A
dNTPs (10 mM)TakaRa4019
dNTPs (2.5 mM)TakaRa4030
Electrophoresis SystemTanonEPS300
Ex-Taq (5 U/μL)TakaRaRR001
Gel Imaging SystemUVITECFire Reader
Microcentifuge tubesVariousVarious
M-MLV reverse transcriptase (200 IU/µL)TakaRa2641A 
NanoDrop 1000 SpectrophotometerThermoscientificND1000
Oligo (dT)15TakaRa3805
PCR MachineBIO-RADT100
PCR TubesVariousVarious
Phusion High-Fidelity DNA PolymearaseNEW ENGLAND BioLabsM0530S
PipettorsVariousVarious
Random PrimerTakaRa3801
RNase Inhibitor (40 IU/µL)TakaRa2313A
RNase-free ddH2OTakaRa9102
Taq Buffer (10×)TakaRa9152A
TipsVariousVarious
Vortex mixerVariousVarious

Odniesienia

  1. Hemachudha, T., Laothamatas, J., Rupprecht, C. E. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurology. 1 (2), 101-109 (2002).
  2. Amarasinghe, G. K., Arechiga Ceballos, N. G. Taxonomy of the order Mononegavirales: update 2018. Archives of Virology. 163 (8), 2283-2294 (2018).
  3. Nokireki, T., Tammiranta, N., Kokkonen, U. M., Kantala, T., Gadd, T. Tentative novel lyssavirus in a bat in Finland. Transboundary and Emerging Diseases. 65 (3), 593-596 (2018).
  4. Hu, S. C., et al. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerging Infectious Diseases. 24 (4), 782-785 (2018).
  5. World Organization for Animal Health (OIE). Chapter 2.1.17 - Rabies (infection with rabies virus and other lyssaviruses). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2018. , Available from: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.17_RABIES.pdf 2-14 (2018).
  6. Rupprecht, C. E., Fooks, A. R., Abela-Ridder, B. Laboratory techniques in rabies. World Health Organization. , 74-195 (2018).
  7. Mani, R. S., et al. Utility of real-time Taqman PCR for antemortem and postmortem diagnosis of human rabies. Journal of Medical Virology. 86 (10), 1804-1812 (2014).
  8. Fooks, A. R., et al. Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century. PLOS Neglected Tropical Diseases. 3 (9), 530(2009).
  9. Jiang, Y., et al. An outbreak of pig rabies in Hunan province, China. Epidemiology and Infection. 136 (4), 504-508 (2008).
  10. Liu, Y., et al. Analysis of the complete genome of the first Irkut virus isolate from China: comparison across the Lyssavirus genus. Molecular Phylogenetics and Evolution. 69 (3), 687-693 (2013).
  11. Chen, T., et al. Possible Transmission of Irkut Virus from Dogs to Humans. Biomedical and Environmental Sciences. 31 (2), 146-148 (2018).
  12. Feng, Y., et al. Disease outbreaks caused by steppe-type rabies viruses in China. Epidemiology and Infection. 143 (6), 1287-1291 (2015).
  13. Feng, Y., et al. Livestock rabies outbreaks in Shanxi province, China. Archives of Virology. 161 (10), 2851-2854 (2016).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Nested RT PCRLyssavirusesRabies DiagnosisAnimal Brain SpecimensBiological Fluid SpecimensCerebrospinal FluidRNA ExtractionReverse TranscriptionPCR ContaminationReagent HandlingRABVCDNA PreparationMaster MixThermocyclerClinical Surveillance

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone