Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol details a procedure in which human neuronal cultures are transduced with lentiviral constructs coding for mutant human tau. Transduced cultures display tau aggregates and associated pathologies.
Aberrant aggregation of the protein tau is pathogenically involved in a number of neurodegenerative diseases, including Alzheimer’s disease (AD). Although mouse models of tauopathy have provided a valuable resource for investigating the neurotoxic mechanisms of aggregated tau, it is becoming increasingly apparent that, due to interspecies differences in neurophysiology, the mouse brain is unsuitable for modeling the human condition. Advances in cell culture methods have made human neuronal cultures accessible for experimental use in vitro and have aided in the development of neurotherapeutics. However, despite the adaptation of human neuronal cell cultures, in vitro models of human tauopathy are not yet widely available. This protocol describes a cellular model of tau aggregation in which human neurons are transduced with lentiviral-derived vectors that code for pathogenically mutated tau fused to a yellow fluorescent protein (YFP) reporter. Transduced cultures produce tau aggregates that stain positively for thioflavin and display markers of neurotoxicity, such as decreased axonal length and increased lysosomal volume. This procedure may be a useful and cost-effective model for studying human tauopathies.
Pathological aggregation of the microtubule-associated protein tau is a defining feature of many neurodegenerative diseases, including AD, frontotemporal dementia (FTD), Pick’s disease, and progressive supranuclear palsy (PSP)1. In a nondiseased state, tau binds to and stabilizes microtubule filaments in neuronal axons2. However, disease-associated hyperphosphorylation of tau promotes tau aggregation, dissociation from microtubules, and neuronal toxicity3. The toxic effects of aggregated tau may involve aberrant activation of cholinergic4 and glutamatergic receptors5 resulting in the dysregulation of intracellular calcium and, eventually, cell death. In animal models, the reduction of brain tau improves pathology in AD mice6 and in mouse models of repetitive mild traumatic brain injury7.
Mounting evidence demonstrates that the structure and binding affinity of mouse-derived tau are distinct from human-derived tau and that mouse tau is unsuitable for modeling human tauopathies8. However, human cell tauopathy models are not widely commercially available. The overall goal of this work is to describe an in vitro model of tau aggregation in which human neurons are transduced with lentiviral-derived vectors containing mutant human tau constructs9. Tau aggregate causing lentiviral constructs encodes for the tau repeat domain harboring P301L and V337M mutations fused to a YFP reporter (Tau-RDLM-YFP) while control constructs code for the wild-type (Wt) tau repeat domain fused to a YFP reporter (Tau-Wt-YFP). Neuronal cultures transduced using this method express approximately nine times more tau than nontransduced cultures. Although the amount of tau expression overexpressed is roughly equal between Tau-RDLM-YFP- and Tau-Wt-YFP-transduced cells, only neurons transduced with Tau-RDLM-YFP display aggregates. Cultures transduced with Tau-RDLM-YFP stain positively for thioflavin and display reductions in axonal length and synaptic density. Therefore, this cellular model may be a useful tool for studying tau aggregation in vitro.
1. Preparation of Media and Reagents
2. Lentiviral Constructs
NOTE: Before beginning work with lentiviral constructs, ensure that the lab has been approved to use biosafety level-2 (BSL-2) agents. Furthermore, BSL-2 culture hoods, personal protective equipment (PPE), and disposal methods must be used when working with lentiviral vectors.
3. Culturing Human Neural Stem Cells
NOTE: NSCs are typically seeded at 100,000–150,000 cells/cm2 and most commercially available NSCs are sold as 1 x 106 cells/vial. This protocol has been optimized for 10 cm cell culture dishes (although other sizes of dishes may be used); therefore, if commercially available NSCs are being used, the NSCs may need to be expanded by first being cultured in six-well dishes in order to result in enough cells to seed 10 cm dishes. This protocol can alternatively be adapted for a variety of cell culture dish sizes (but it does not contain instructions for passaging NSCs as these protocols are available elsewhere11,12).
4. Transduction and Maintenance of Neuronal Cultures
5. Imaging of Cells
6. Optional Methods
Tau-RDLM-YFP-transduced neurons were fluorescently tagged with YFP, and RDLM-transduced cultures displayed aggregates after transduction. These inclusions stained positive for thioflavin (Figure 1). As Figure 1 demonstrates, this protocol produces neuronal cultures that display thioflavin-positive tau aggregates. For initial experiments, it is recommended that neuronal differentiation is confirmed by immunolabeling the neuron-specific marker β-tubulin III i...
This protocol describes the generation of an in vitro model of human tauopathy that exhibits silver-stain-positive aggregates and thioflavin-positive neurofibrillary tangles (NFTs). Moreover, transduced cells display tau-induced pathologies such as morphological defects, reduced synaptogenesis, and an increased lysosomal volume. The main advantage of this protocol is that it provides an accessible and cost-effective model of neuronal tauopathy, which can be used for drug screening studies, as well as for the analysis of ...
The authors have nothing to disclose.
The authors would like to thank Dr. Peter Davies at Albert Einstein College of Medicine for supplying PHF-1 and CP13 antibodies and Dr. Marc Diamond at the University of Texas, Southwestern, for providing the tau constructs. This work was supported by grants from the Alzheimer’s Association (NIRG-14-322164) to S.H.Y. and from the California Institute for Regenerative Medicine (TB1-01193) to P.R.
Name | Company | Catalog Number | Comments |
10 cm culture dishes | Thermofisher | 12556002 | |
15 mL tubes | Biopioneer | CNT-15 | |
16% paraformaldehyde | Thermofisher | 50-980-487 | |
24 well culture plates | Thermofisher | 930186 | |
50 mL tubes | Biopioneer | CNT-50 | |
70% ethanol in spray bottle | Various sources | NA | |
B27 supplement | Thermofisher | 17504044 | |
Basement membrane matrix (Matrigel) | Corning | 356231 | |
Basic FGF | Biopioneer | HRP-0011 | |
Bovine serum albumin | Sigma | A7906 | |
Cell culture incubator | Various sources | NA | |
Centrifuge | Various sources | NA | |
DMEM-F12 culture media with glutamine | Thermofisher | 10565042 | |
Ethanol (50% concentration or higher) | Various sources | NA | |
Flourescently labeled secondary antibodies | Various Sources, experiment dependent | NA | |
Fluorescent microscope | Various sources | NA | |
Glass coverslips | Thermofisher | 1254581 | |
Glass slides | Thermofisher | 12-550-15 | |
Human neural stem cells | Various sources | NA | |
Lentiviral vectors | Various sources | custom order | |
Mounting media | Thermofisher | P36934 | |
N2 supplement | Thermofisher | 17502048 | |
Penicillin-Streptomycin | Thermofisher | 15140122 | |
Phosphate buffered saline | Thermofisher | 14190250 | |
Primary antibodies | Various Sources, experiment dependent | NA | |
Rocking or rotating platform | Various sources | NA | |
Sterile cell culture hood | Various sources | NA | |
Thioflavin S | Sigma | T1892-25G | |
Triton X-100 | Thermofisher | BP151-100 | |
Water bath | Various sources | NA |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone