Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we describe a step-by-step strategy for isolating small RNAs, enriching for microRNAs, and preparing samples for high-throughput sequencing. We then describe how to process sequence reads and align them to microRNAs, using open source tools.
Half of all human transcripts are thought to be regulated by microRNAs. Therefore, quantifying microRNA expression can reveal underlying mechanisms in disease states and provide therapeutic targets and biomarkers. Here, we detail how to accurately quantify microRNAs. Briefly, this method describes isolating microRNAs, ligating them to adaptors suitable for high-throughput sequencing, amplifying the final products, and preparing a sample library. Then, we explain how to align the obtained sequencing reads to microRNA hairpins, and quantify, normalize, and calculate their differential expression. Versatile and robust, this combined experimental workflow and bioinformatic analysis enables users to begin with tissue extraction and finish with microRNA quantification.
First discovered in 19931, it is now estimated that nearly 2000 microRNAs are present in the human genome2. MicroRNAs are small non-coding RNAs that are typically 21-24 nucleotides long. They are post-transcriptional regulators of gene expression, often binding to complementary sites in the 3-untranslated region (3-UTR) of target genes to repress protein expression and degrade mRNA. Quantifying microRNAs can give valuable insight into gene expression and several protocols have been developed for this purpose3.
We have developed a defined, reproducible, and long-standing protocol for small RNA sequencing, and for analyzing normalized reads using open source bioinformatics tools. Importantly, our protocol enables the simultaneous identification of both endogenous microRNAs and exogenously delivered constructs that produce microRNA-like species, while minimizing reads that map to other small RNA species, including ribosomal RNAs (rRNAs), transfer RNA-derived small RNAs (tsRNAs), repeat-derived small RNAs, and mRNA degradation products. Fortunately, microRNAs are 5-phosphorylated and 2-3 hydroxylated4, a feature that can be leveraged to separate them from these other small RNAs and mRNA degradation products. Several commercial options exist for microRNA cloning and sequencing that are often quicker and easier to multiplex; however, the proprietary nature of kit reagents and their frequent modifications makes comparing sample runs challenging. Our strategy optimizes collecting only the correct size of microRNAs through acrylamide and agarose gel purification steps. In this protocol, we also describe a procedure for aligning sequence reads to microRNAs using open source tools. This set of instructions will be especially useful for novice informatics users, regardless of whether our library preparation method or a commercial method is used.
This protocol has been used in several published studies. For example, it was used to identify the mechanism by which the Dicer enzyme cleaves small hairpin RNAs at a distance of two nucleotides from the internal loop of the stem-loop structure - the so-called "loop-counting rule"5. We also followed these methods to identify the relative abundance of delivered small hairpin RNAs (shRNA) expressed from recombinant adeno-associated viral vectors (rAAVs), to identify the threshold of shRNA expression that can be tolerated prior to liver toxicity associated with excess shRNA expression6. Using this protocol, we also identified microRNAs in the liver that respond to the absence of microRNA-122 - a highly expressed hepatic microRNA - while also characterizing the degradation pattern of this microRNA7. Because we have used our protocol consistently in numerous experiments, we have been able to observe sample preparations longitudinally, and see that there are no discernible batch effects.
In sharing this protocol, our goal is to enable users to generate high quality, reproducible quantification of microRNAs in virtually any tissue or cell line, using affordable equipment and reagents, and free bioinformatics tools.
Animal experiments were authorized by the Institutional Animal Care and Use Committee of the University of Washington.
Small RNA library preparation
1. RNA isolation
2. 3' adaptor ligation
3. 5' linker ligation
4. Reverse transcription (RT)
5. PCR amplification
6. Agarose gel purification
Small RNA sequence alignment and bioinformatics
7. Data upload
8. Adaptor removal, barcode sort, and trim
9. Alignment of reads to microRNAs
Schematic of steps involved in library preparation
An overall schematic of small RNA extraction, sequencing, and alignment is outlined in Figure 2.
Liver samples from one male and one female mouse were collected and snap frozen in liquid nitrogen. Total RNA was extracted and evaluated for quality and concentration.
Small RNA sequencing yields sufficient RNA for s...
Despite the identification of microRNAs over 20 years ago13, the process of microRNA sequencing remains laborious and requires specialized equipment, hindering laboratories from routinely adopting in-house protocols14. Other techniques can simultaneously evaluate microRNAs, like microRNA microarrays and multiplexed expression panels; however, these approaches are limited in that they only quantify the microRNAs present in their probe set. Because of this, they miss importan...
The authors have nothing to disclose.
We would like to thank members of the laboratories of Andrew Fire and Mark Kay for guidance and suggestions.
Name | Company | Catalog Number | Comments |
100 bp DNA ladder | NEB | N3231 | |
19:1 bis-acrylamide | Millipore Sigma | A9926 | |
25 bp DNA step ladder | Promega | G4511 | |
Acid phenol/chloroform | ThermoFisher | AM9720 | |
Acrylamide RNA loading dye | ThermoFisher | R0641 | |
Ammonium persulfate (APS) | Biorad | 161-0700 | |
Bioanalyzer instrument | Agilent | G2991AA | For assessing RNA quality and concentration |
Chloroform | Fisher Scientific | C298-500 | |
Ethanol (100%) | Sigma | E7023 | |
Gel Loading Buffer II | ThermoFisher | AM8547 | |
GlycoBlue | ThermoFisher | AM9516 | Blue color helps in visualizing pellet |
HCl | Sigma | 320331 | |
KOH | Sigma | P5958 | |
Maxi Vertical Gel Box 20 x 20cm | Genesee | 45-109 | |
miRVana microRNA isolation kit | ThermoFisher | AM1560 | |
miSeq system | Illumina | SY-410-1003 | For generating small RNA sequencing data |
NaCl | Fisher Scientific | S271-500 | |
Nusieve low-melting agarose | Lonza | 50081 | |
Parafilm (laboratory sealing film) | Millipore Sigma | P7793 | |
Poly-ethylene glycol 8000 | NEB | included with M0204 | |
ProtoScript II First strand cDNA Synthesis Kit | NEB | E6560S | |
QIAquick Gel Extraction kit | Qiagen | 28704 | |
Qubit Fluorometer | ThermoFisher | Q33226 | For quantifying DNA concentration |
Qubit RNA HS Assay kit | ThermoFisher | Q32855 | |
Razor Blades | Fisher Scientific | 12640 | |
Siliconized Low-Retention 1.5 ml tubes | Fisher Scientific | 02-681-331 | |
T4 RNA ligase 1 | NEB | M0204 | |
T4 RNA Ligase 2, truncated K227Q | NEB | M0351S | |
TapeStation | Agilent | G2939BA | For assessing RNA quality and concentration |
Taq DNA Polymerase | NEB | M0273X | |
TEMED | Biorad | 161-0800 | |
Tris Base pH 7.5 | Sigma | 10708976001 | |
Tris-buffered EDTA | Sigma | T9285 | |
Trizol | ThermoFisher | 15596026 | |
UltraPure Ethidium bromide (10 mg/ml) | Invitrogen | 15585-011 | |
Universal miRNA cloning linker | NEB | S1315S | |
Urea | Sigma | U5378 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone