Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We present a robust, cost-effective, and flexible method for measuring changes in hepatocyte number and nuclear ploidy within fixed/cryopreserved tissue samples that does not require flow cytometry. Our approach provides a powerful sample-wide signature of liver cytology ideal for tracking the progression of liver injury and disease.
When the liver is injured, hepatocyte numbers decrease, while cell size, nuclear size and ploidy increase. The expansion of non-parenchymal cells such as cholangiocytes, myofibroblasts, progenitors and inflammatory cells also indicate chronic liver damage, tissue remodeling and disease progression. In this protocol, we describe a simple high-throughput approach for calculating changes in the cellular composition of the liver that are associated with injury, chronic disease and cancer. We show how information extracted from two-dimensional (2D) tissue sections can be used to quantify and calibrate hepatocyte nuclear ploidy within a sample and enable the user to locate specific ploidy subsets within the liver in situ. Our method requires access to fixed/frozen liver material, basic immunocytochemistry reagents and any standard high-content imaging platform. It serves as a powerful alternative to standard flow cytometry techniques, which require disruption of freshly collected tissue, loss of spatial information and potential disaggregation bias.
Hepatocytes in the mammalian liver can undergo stalled cytokinesis to produce binuclear cells, and DNA endoreplication to produce polyploid nuclei containing up to 16N DNA content. Overall cellular and nuclear ploidy increase during postnatal development, ageing and in response to diverse cellular stresses1. The process of polyploidization is dynamic and reversible2, although its precise biological function remains unclear3. Increased ploidy is associated with reduced proliferative capacity4, genetic diversity2, adaptation to chronic injury5 and cancer protection6. Hepatocyte ploidy alterations occur as a result of altered circadian rhythm7, and weaning8. Most notably, the ploidy profile of the liver is altered by injury and disease9, and compelling evidence suggests that specific ploidy changes, such as increased ≥8N nuclei or loss of 2N hepatocytes, provide useful signatures for tracking non-alcoholic fatty liver disease (NAFLD) progression3,10, or the differential impact of viral infections11.
In general terms, liver injury and regeneration are associated with increased hepatocyte cell size and nuclear area12, together with reduced overall numbers of hepatocytes, particularly those with 2N DNA content10,11. Parenchymal injury in the liver is also frequently accompanied by expansion of non-parenchymal cells (NPCs), including stromal myofibroblasts, inflammatory cells and bipotent liver progenitor cells. High-throughput methods that provide a quantitative cytological profile of parenchymal cell number and nuclear ploidy, whilst also accounting for changes in NPCs, therefore have considerable potential as research and clinical tools to track the response of the liver during injury and disease. Compelling recent in situ analysis of ploidy spectra in human samples of hepatocellular carcinoma also demonstrate that nuclear ploidy is dramatically increased within tumors and is specifically amplified in more aggressive tumor subtypes with reduced differentiation and loss of TP5313. Hence, there is a strong possibility that methodological advances in quantitative assessment of nuclear ploidy will assist in future prognostic profiling of liver cancer.
In this protocol, a flexible high-throughput methodology for the comparative analysis of mouse liver tissue sections is described, which provides detailed cytometric profiling of hepatocyte numbers, the NPC response and an internally calibrated method for estimating nuclear ploidy (Figure 1). Hepatocytes are distinguished from NPCs by hepatocyte nuclear factor 4 alpha (HNF4α) immunolabelling, prior to characterization of nuclear size and nuclear morphometry. "Minimal DNA content" is estimated for all circular nuclear masks by integrating mean Hoechst 33342 intensity (a proxy for DNA density) with interpolated three-dimensional (3D) nuclear volume. Hepatocyte minimal DNA content is then calibrated using NPCs to generate a nuclear ploidy profile.
Image acquisition, nuclear segmentation and image analysis are performed using high-content imaging, enabling large areas of two-dimensional (2D) liver sections containing tens of thousands of cells to be screened. A custom-written program is provided for automated post-processing of high-content image analysis data to produce a sample-wide ploidy profile for all circular hepatocyte nuclei. This is performed using free to download software to calculate nuclear ploidy based on stereological image analysis (SIA)10,11,14,15. The SIA methodology has been previously validated by flow cytometry as an accurate, albeit laborious, method for estimating hepatocyte nuclear ploidy in the liver14, assuming circular nuclear morphology and a monotonic relationship between nuclear size and DNA content. In this protocol, both nuclear parameters are measured by assessment of nuclear morphometry and Hoechst 33342 labelling. Calculation of "minimal DNA content" for each nuclear mask is followed by calibration of hepatocyte nuclear ploidy using NPCs, which have a known 2−4N DNA content and therefore serve as a useful internal control.
Compared to conventional flow cytometry methods16 the approach described enables hepatocyte nuclear ploidy to be assessed in situ and does not require access to fresh tissue or disaggregation methods that can bias outcomes and be difficult to standardize. As with all SIA-based approaches, nuclear ploidy subclasses >2N are underrepresented by 2D sampling due to the sectioning of larger nuclei outside of the equatorial plane. The tissue-wide ploidy profile also describes minimum DNA content for all circular hepatocyte nuclear masks, and does not directly discriminate between mononuclear hepatocytes and binuclear cells that have two discrete ("non-touching") nuclei of the same ploidy. However, the simplicity of this protocol allows considerable scope for it to be adapted to account for additional parameters such as internuclear spacing or cell perimeter analysis, that would facilitate identification of binuclear cells providing a more detailed assessment of cellular ploidy.
Access restricted. Please log in or start a trial to view this content.
All animal experiments were previously approved by the CIPF ethics committee. Mice were housed in a pathogen-free facility at the Centro de Investigación Príncipe Felipe (Valencia, Spain), registered as an experimental animal breeder, user, and supply centre (reg. no. ES 46 250 0001 002) under current applicable European and Spanish animal welfare regulations (RD 53/2013).
1. Tissue harvesting and sample preparation
NOTE: This protocol describes how to freeze tissue without prior fixation or cryopreservation. For previously fixed/cryopreserved samples proceed to section 2 and omit step 3.1. All analyses have been performed using adult female C57BL/6 mice aged 12−16 weeks.
2. Cryosectioning
3. Fluorescence immunolabelling
4. Fluorescence image acquisition
NOTE: For this step, a high-content imaging platform (Table of Materials) is required that supports automatic fluorescence image acquisition.
5. Automated fluorescence image analysis
NOTE: This step requires appropriate image analysis software (Table of Materials) capable of: (1) automatically identifying Hoechst labelled nuclei within images at 405 nm (nuclear segmentation), (2) assessing mean Hoechst nuclear intensity and morphometry, and (3) threshold analysis to determine the +/- status of nuclear fluorescence at 488 nm (HNF4α). Some basic operator training/expertise is required to visually assess and adjust segmentation and thresholding parameters within the program to ensure that nuclei and HNF4α+/- status are optimally gated (Figure 2).
6. Data analysis
NOTE: The data analysis step can be performed using any standard spreadsheet software.
Access restricted. Please log in or start a trial to view this content.
This method has been used to measure the impact of cholestatic injury on the adult mouse liver by feeding animals for 0−21 days with a hepatotoxic diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)17. Chronic DDC feeding results in hepatocellular injury increased ploidy and periportal expansion of NPCs. The user should be aware that mouse strain and age-dependent differences may exist in nuclear ploidy and that all analyses have been perform...
Access restricted. Please log in or start a trial to view this content.
A high-content, high-throughput approach for the analysis of tissue remodeling and estimation of hepatocyte nuclear ploidy in the murine liver is described. Once familiar with the procedure, a user can process, image and analyze multiple samples in a 3−5 day period, generating large testable datasets that provide a detailed signature of liver health. Given the simplicity of the sample preparation method, together with the large numbers of cells and tissue area analyzed (on average 14 mm2/sample), results...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was funded by the Spanish MINECO Government grants BFU2014-58686-P (LAN) and SAF-2017-84708-R (DJB). LAN was supported by a national MINECO Ramón y Cajal Fellowship RYC-2012-11700 and Plan GenT award (Comunitat Valenciana, CDEI-05/20-C), and FMN by a regional ValI+D studentship of the Valencian Generalitat ACIF/2016/020. RP would like to acknowledge Prof. Ewa K. Paluch for funding. We thank Dr. Alicia Martínez-Romero (CIPF Cytometry service) for help with the IN Cell Analyzer platform.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3,5-diethoxycarboxynl-1,4-dihydrocollidine diet (DDC) | TestDiet | 1810704 | Modified LabDiet mouse diet 5015 with 0.1% DDC |
Alexa Fluor 488 donkey anti-goat IgG (H+L) | Invitrogen | A11055 | Dilution 1:500 |
Bovine Serum Albumin | Sigma-Aldrich | A7906 | |
Cryostat Leica CM1850 UV | Leica biosystems | CM1850 UV | Tissue sectioning |
Fluorescent Mounting medium | Dako | S3023 | |
GraphPad Prism | GraphPad Software | Prism 8 | Statistical software for graphing data |
Hoechst 33342 | Sigma-Aldrich | B2261 | Final concentration 5 µg/mL |
IN Cell Analyzer 1000 | GE Healthcare Bio-Sciences Corp | High-Content Cellular Imaging and Analysis System | |
MATLAB | MathWorks | R2019a | Data analytics software for automated analysis of nuclear ploidy |
Microscope coverslides | VWR International | 630-2864 | Size of 24 x 60 mm |
Microsoft Office Excel | Microsoft | Speadsheet software | |
OCT Tissue Tek | Pascual y Furió | 4583 | |
Paraformaldehyde | Panreac AppliChem | 141451.121 | |
Pen for immunostaining | Sigma-Aldrich | Z377821-1EA | 5mm tip width |
Polysine Microscope Slides | VWR International | 631-0107 | |
Rabbit polyclonal Anti-HNF4α | Thermo Fisher Scientific | PA5-79380 | Dilution 1:250 (alternative) |
Rabit polyclonal Anti-HNF4α | Santa Cruz Biotechnology | sc-6556 | Dilution 1:200 (antibody used in the study) |
Tween 20 | Sigma-Aldrich | P5927 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone