Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This work describes protocols for the preparation of magnetic nanoparticles, its coating with SiO2, followed by its amine functionalization with (3-aminopropyl)triethoxysilane (APTES) and its conjugation with deferoxamine using a succinyl moiety as a linker. A deep structural characterization description and a capture bacteria assay using Y. enterocolitica for all the intermediate nanoparticles and the final conjugate are also described in detail.
In the present work, the synthesis of magnetic nanoparticles, its coating with SiO2, followed by its amine functionalization with (3-aminopropyl)triethoxysilane (APTES) and its conjugation with deferoxamine, a siderophore recognized by Yersinia enterocolitica, using a succinyl moiety as a linker are described.
Magnetic nanoparticles (MNP) of magnetite (Fe3O4) were prepared by solvothermal method and coated with SiO2 (MNP@SiO2) using the Stöber process followed by functionalization with APTES (MNP@SiO2@NH2). Then, feroxamine was conjugated with the MNP@SiO2@NH2 by carbodiimide coupling to give MNP@SiO2@NH2@Fa. The morphology and properties of the conjugate and intermediates were examined by eight different methods including powder X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-Ray (EDX) mapping. This exhaustive characterization confirmed the formation of the conjugate. Finally, in order to evaluate the capacity and specificity of the nanoparticles, they were tested in a capture bacteria assay using Yersinia enterocolitica.
The bacteria detection methods using MNP are based on the molecular recognition of antibodies, aptamers, bioprotein, carbohydrates conjugated to MNP by the pathogenic bacteria1. Taking into account that siderophores are recognized by specific receptors on the outer membrane of bacteria, they could also linked to MNP to increase their specificity2. Siderophores are small organic molecules involved in the Fe3+ uptake by bacteria3,4. The preparation of conjugates between siderophores and MNP along with their evaluation for the capture and isolation of bacteria has not yet been reported.
One of the crucial steps in the synthesis of conjugates of magnetic nanoparticles with small molecules is the selection of the type of bond or interaction between them to ensure that the small molecule is attached to the surface of the MNP. For this reason, the procedure to prepare the conjugate between magnetic nanoparticles and feroxamine—the siderophore recognized by Yersinia enterocolitica—was focused at the generation of a modifiable surface of the MNP to allow linking it covalently to the siderophore by carbodiimide chemistry. In order to get an uniform magnetite nanoparticles (MNP) and to improve nucleation and size control, a solvolysis reaction with benzyl alcohol was carried in a thermal block without shaking5. Then, a silica coating was generated by Stöber method to confer protection and improve the stability of the nanoparticles suspension in aqueous media6. Taking into account the structure of the feroxamine, the introduction of amine groups is necessary to produce suitable nanoparticles (MNP@SiO2@NH2) to be conjugated with the siderophore. This was achieved by condensation of (3-aminopropyl)triethoxysilane (APTES) with the alcohol groups present on the surface of the silica modified nanoparticles (MNP@SiO2) using a sol-gel method7.
In parallel, the feroxamine iron(III) complex was prepared by complexation of the commercially available deferoxamine with iron acetyl acetonate in aqueous solution. N-succinylferoxamine, bearing succinyl groups that will act as linkers, was obtained by the reaction of feroxamine with succinic anhydride.
The conjugation between MNP@SiO2@NH2 and N-succinylferoxamine to give MNP@SiO2@NH@Fa was carried out through carbodiimide chemistry using as coupling reagents benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) and 1-hydroxybenzotriazole (HOBt) in a soft basic media to activate the terminal acid group in N-succinylferoxamine8.
Once the MNPs were characterized, we evaluated the capabilities of bare and functionalized magnetic nanoparticles to capture wild type (WC-A) and a mutant of Y. enterocolitica lacking feroxamine receptor FoxA (FoxA WC-A 12-8). Plain MNPs, functionalized MNPs and the conjugate MNP@SiO2@NH@Fa were allowed to interact with each Y. enterocolitica strain. The bacteria-conjugate aggregates were separated from the bacteria suspension by the application of a magnetic field. The separated aggregates were rinsed twice with phosphate buffered saline (PBS), re-suspended in PBS to prepare serial dilutions and then, they were plated for colony counting. This protocol demonstrates each step of the synthesis of MNP@SiO2@NH@Fa, the structural characterization of all the intermediates and the conjugate, and a bacterium capture assay as an easy way to evaluate the specificity of the conjugate in relation to the intermediates.9
Access restricted. Please log in or start a trial to view this content.
NOTE: For the reactions performed under inert atmosphere conditions, all the glassware was previously dried in an oven at 65 °C, sealed with a rubber septum and purged with argon three times.
1. Synthesis of magnetic nanoparticles conjugated with feroxamine
2. Bacterial assay with Y. enterocolitica strains to quantify the capture of pathogenic bacteria with nanoparticles
Access restricted. Please log in or start a trial to view this content.
An exhaustive structural characterization is carried out in order to determine the morphology and the properties of each intermediate and the final conjugate. For this purpose, the techniques XRD, FT-IR, Raman spectroscopy, TGA, TEM, EDX mapping and XPS are used in order to demonstrate the formation of the conjugate. The oxidation states of the atoms at the surface of the nanoparticles acquired by X-ray photoelectron spectroscopy (XPS) are the most relevant data to confirm the formation of covalent bonds between the nano...
Access restricted. Please log in or start a trial to view this content.
This protocol describes the synthesis of a conjugate between magnetic nanoparticles and the siderophore feroxamine by covalent bonding. The synthesis of magnetite was carried out using the protocol reported by Pinna et al.5 followed by silica coating to protect the magnetic core of corrosion in aqueous systems, to minimize the aggregation and to provide a suitable surface for functionalization6. The silica coating process was modified. Instead of carrying out three coatings...
Access restricted. Please log in or start a trial to view this content.
We have nothing to disclose.
The authors gratefully acknowledge Professor Klaus Hantke (University of Tübingen, Germany) for kindly supply the Yersinia enterocolitica strains used in this work. This work was supported by grants AGL2015-63740-C2-1/2-R and RTI2018-093634-B-C21/C22 (AEI/FEDER, EU) from the State Agency for Research (AEI) of Spain, co-funded by the FEDER Programme from the European Union. Work in University of Santiago de Compostela and University of A Coruña was also supported by grants GRC2018/018, GRC2018/039, and ED431E 2018/03 (CICA-INIBIC strategic group) from Xunta de Galicia. Finally, we want to thank to Nuria Calvo for her great collaboration doing the voice-off this video protocol.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
1-Hydroxybenzotriazole hydrate HOBT | Acros | 300561000 | |
2,2′-Bipyridyl | Sigma Aldrich | D216305 | |
3-Aminopropyltriethoxysilane 99% | Acros | 151081000 | |
Ammonium hydroxide solution 28% NH3 | Sigma Aldrich | 338818 | |
Benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate BOP Reagent | Acros | 209800050 | |
Benzyl alcohol | Sigma Aldrich | 822259 | |
Deferoxamine mesylate salt >92,5% (TLC) | Sigma Aldrich | D9533 | |
Ethanol, anhydrous, 96% | Panreac | 131085 | |
Ethyl Acetate, Extra Pure, SLR, Fisher Chemical | |||
Iron(III) acetylacetonate 97% | Sigma Aldrich | F300 | |
LB Broth (Lennox) | Sigma Aldrich | L3022 | |
N,N-Diisopropylethylamine, 99.5+%, AcroSeal | Acros | 459591000 | |
N,N-Dimethylformamide, 99.8%, Extra Dry, AcroSeal | Acros | 326871000 | |
Pyridine, 99.5%, Extra Dry, AcroSeal | Acros | 339421000 | |
Sephadex LH-20 | Sigma Aldrich | LH20100 | |
Succinic anhydride >99% | Sigma Aldrich | 239690 | |
Tetraethyl orthosolicate >99,0% | Sigma Aldrich | 86578 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone