JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We present a genetically modified-free (GM-free) method to obtain cells with a neuronal phenotype from reprogrammed peripheral blood cells. Activation of a signaling pathway linked to novel human GPI-linked protein reveals an efficient GM-free method for obtaining human pluripotent stem cells.

Streszczenie

Many human neurological disorders are caused by degeneration of neurons and glial cells in the brain. Due to limitations in pharmacological and other therapeutic strategies, there is currently no cure available for the injured or diseased brain. Cell replacement appears as a promising therapeutic strategy for neurodegenerative conditions. To this day, neural stem cells (NSCs) have been successfully generated from fetal tissues, human embryonic cells (ES) or induced pluripotent stem cells (iPSC). A process of dedifferentiation was initiated by activation of the novel human GPI-linked glycoprotein, which leads to generation of pluripotent stem cells. These blood-derived pluripotent stem cells (BD-PSCs) differentiate in vitro into cells with a neural phenotype as shown by brightfield and immunofluorescence microscopy. Ultrastructural analysis of these cells by means of electron microscopy confirms their primitive structure as well as neuronal-like morphology and subcellular characteristics.

Wprowadzenie

Development of basic and pre-clinical stem cell research methods encourages the clinical application of stem cell-based therapies for neurological diseases. Such potential therapy critically depends on the method for generation of human neural cells leading to functional recovery1.

Neural stem cells (NSCs) self-renew and differentiate into new neurons throughout life in a process called adult neurogenesis. Only very restricted brain areas harbor NSCs competent to generate newborn neurons in adulthood. Such NSCs can give rise to mature neurons, which are involved in learning and memory, thus replacing lost or damaged neurons. Unfortunately, these NSCs are present in restricted amounts and this limited neurogenesis decreases rapidly during juvenile development2. Therefore, other sources of neural cells must be considered in a cell therapy objective.

Degenerative neurological diseases are difficult to cure using standard pharmacological approaches. New therapeutic strategies for embracing many immedicable neurological disorders are based on cell replacement therapies of diseased and injured tissue. NSC transplantation could replace damaged cells and provide beneficial effects. Other sources for neural cell replacement include human embryonic stem cells (ESC), which are derived from the inner cell mass of mammalian blastocysts3, as well as iPSCs4, which have extensive self-renewal capacity like ESCs and are capable to differentiate into various cell lineages. NSCs can also be generated by direct reprogramming from human fibroblasts avoiding pluripotent state5.

Cell replacement therapy is still a challenging issue. Though ESC, fetal, or iPS can be a source for generation of neuronal cells for treating many incurable neurological diseases, autologous adult SCs cell replacement of damaged tissues is a better alternative that circumvents immunological, ethical and safety concerns.

Activation of human GPI-linked protein by antibody-crosslinking via phosphorylation of PLCγ/PI3K/Akt/mTor/PTEN initiates a dedifferentiation of blood progenitor cells and generation of blood-derived pluripotent stem cells (BD-PSCs)6. These cells differentiate in vitro toward neuronal cells as confirmed by means of brightfield, immunofluorescence and transmission electron microscopy (TEM) analysis.

In this work we describe the GM-free generation of BD-PSCs and their successful re-differentiation into cells with neuronal phenotype.

Protokół

Ethic approvals were obtained when performing the experiments.

1. Isolation of human peripheral blood mononuclear cells (PBMNCs)

  1. Ensure that all donors signed informed consent before blood withdrawing in compliance with institutional guidelines.
  2. Take 30 mL of blood from healthy donors by trained medical personnel according to the standard protocol.
  3. Isolate PBMNCs by density gradient media. Use 10 mL of media with 25 mL of 1:1 blood diluted with phosphate buffer saline (PBS), and centrifuge at 300 x g for 30 min.
  4. Isolate the interphase layer between the plasma and the density gradient media by pipetting. Wash the isolated cells with 5 mL of sterile PBS and centrifuge at 300 x g for 10 min. Repeat twice.
  5. Count the number of cells by standard methods using a counting chamber.

2. Activation of human GPI-anchored glycoprotein by antibody crosslinking on the surface of PBMNCs

  1. Place the 6 x 106 mononuclear cells (MNCs) in 15 mL tubes and perform antibody crosslinking by incubating the cells with human GPI-linked membrane protein-specific antibody (30 µg/mL) for 30 min in PBS with 1% bovine serum albumin (BSA) at 37 °C.
  2. Replace incubation medium with Iscove's modified Dulbecco's medium supplemented with 10% fetal bovine serum (FBS).
  3. Grow cells in 15 mL polystyrene tubes, put the tubes in an incubator at 37 °C and 5% CO2 for 8-10 days (without shaking). On D5, add an additional 1-2 mL of Iscove's medium supplemented with 10% FBS to each 15 mL tube.

3. Sorting of newly generated dedifferentiated cells

  1. Count cells with an automated cell counter (18 µL cell suspension + 2 µL fluorescence dye) or in a counting chamber.
  2. Centrifuge cultured cell suspension (5-7 x 106) at 300 x g for 10 min and aspirate the resulting supernatant with a sterile Pasteur pipette.
  3. Re-suspend the cell pellet in 90 µL of pre-cooled PBS pH 7.2, 0.5% BSA and 2 mM EDTA.
  4. Add CD45 positive nano-sized magnetic beads (80 µL) to the cell suspension and incubate on ice for 15 min.
  5. Wash the cells by adding 2 mL of PBS buffer and centrifuge at 300 x g for 10 min.
  6. Re-suspend the cells in 500 µL of PBS buffer.
  7. Wash the column with 500 µL of pre-cooled PBS buffer and place it in the magnetic field.
  8. Place the cell suspension on the column and wash it with 500 µL of PBS buffer (two times) and the centrifuge flow containing CD45 negative cells. Collect them in Iscove's medium supplemented with 1% BSA.
  9. Count the cells in the counting chamber.

4. Preparing cell culture dishes for neuronal differentiation of newly generated stem cells

  1. Coat the culture vessels with poly-L-ornithine and laminin for growing neuronal cells.
  2. Place the glass coverslips in 4-well plates and coat it with 1:5 diluted poly-L-ornithine (0.1 mg/mL in ddH2O) in ddH2O. Place the coverslips into a 37 °C incubator for 1 h. Then wash with ddH2O.
  3. Slowly thaw laminin (0.5-2.0 mg/mL) and add to the top of coverslips. Incubate it at 37 °C for 2 h.
  4. Prepare neural induction medium N2 consisting of 49 mL of D-MEM/F12, 500 µL of N2 supplement, 400 µL of non-essential amino acids (NEAA), basic FGF solution at 20 ng/mL final concentration (prepared from 100 µg/mL stock solution), and heparin at 2 ng/mL final concentration.
  5. Remove excess laminin by pipetting and add neuronal medium N2 to culture dishes.

5. Culturing of neuronal dedifferentiated blood cells

  1. Culture BD-derived CD45 negative cells on laminin/ornithine-coated glass coverslips for 2 days in an incubator at 37 °C and 5% CO2 in N2 medium to initiate a neuronal differentiation of newly BD-generated cells.
  2. Culture cells further in neuronal differentiation medium consisting of 48 mL of Neurobasal medium, 500 µL of L-glutamine, 1 mL of B27 Supplement, 500 µL of NEAA, 50 µL of recombinant human glial-derived neurotrophic factor (GDNF) at 5 µg/250 µL in PBS/0.1% BSA, and 50 µL of recombinant human brain derived neurotrophic factor (BDNF) at 5 µg/200 µL in PBS/0.1% BSA and 50 µL of ascorbic acid solution 2.9 g/50 mL in PBS. Place plates in an incubator at 37 °C and 5% CO2.

6. Immunofluorescence microscopy analysis of blood-derived neural cells

  1. Culture the cells as described above for 16 days and remove the media.
    1. Incubate with pre-warmed fixative consisting of 75 mL of sterile water, 4 g of paraformaldehyde. Add 10 N NaOH as needed and stir until the solution clears. Then add 10 mL of 10x PBS, 0.5 mL of MgCl2, 2 mL of 0.5 M EGTA, and 4 g of sucrose. Titrate to pH 7.4 with 6 N HCl, and bring to 100 mL of sterile water for 15 min, according to Marchenko et al.7.
    2. Discard the fixative and wash the cells 3 times for 5 min each time. Immediately add a freshly made 0.3% Triton X-solution and permeabilize the cells for 5 min. Wash 3 times with PBS and add a blocking solution made by PBS and 5% BSA.
    3. Block the cells at room temperature on a rocker plate for 1 hour.
    4. Prepare appropriate dilution of antibodies in 1% BSA/PBS and incubate the cells with antibody dilutions on rocker plate for 1.5 h at room temperature. Wash the cells 3 times with PBS for 5 min each, incubate the cells with DAPI and mount the coverslips with mounting media for visualization on a microscope.
      NOTE: Directly labeled antibodies used in this experiment are listed in Table of Materials.

7. Transmission electron microscopy analysis of newly generated cells

  1. Seed the cells for TEM in 8-well chamber slides.
  2. Fix the cells in 3.5% glutaraldehyde for 1 h at 37 °C, post-fix in 2% OsO4 for an additional hour at room temperature and stain in 2% uranyl acetate in the dark at 4 °C for 2 h 30 min.
  3. Finally, rinse the cells in distilled water, dehydrate it in ethanol and embed in epoxy resin overnight. The following day transfer the samples to a 70 °C oven for 72 h for resin hardening.
  4. Detach the embedded cell cultures from chamber slide and glue to araldite blocks.
  5. Cut serial semi-thin sections (1.5 µm) with a machine, mount onto glass-slides and lightly stain with 1% toluidine blue.
  6. Glue selected semi-thin sections to araldite blocks and detach them from the glass slide by repeated freezing (in liquid nitrogen) and thawing.
  7. Prepare ultrathin sections (0.06-0.08 µm) with a machine and further contrast with lead citrate.
  8. Obtain micrographs by using electron scanning microscope with digital camera.

Wyniki

The results provide evidence that this novel GM-free method is capable of reverting blood progenitor cells to their most primitive state without directly acting on the human genome.

We have previously shown that GPI-linked protein specific antibody crosslinking initiates via PLCγ/IP3K/Akt/mTOR/PTEN upregulation of highly conserved developmentally relevant genes such as WNT, NOTCH and C-Kit, thus initiating a process of dedifferentiation that leads to the first step to generation ...

Dyskusje

The non-GM method of reprogramming human cells described in this work is based on membrane to nucleus activation of signaling(s) machinery behind the GPI-linked human membrane glycoprotein that initiates the process of dedifferentiation leading to the ex vivo generation and expansion of self-renewing PSCs obtained from non-manipulated human peripheral blood. These cells when cultured in appropriate media are capable of re-differentiation into cells belonging to different germ layers6.

...

Ujawnienia

The corresponding author declares that she is a patent holder related to Novel Human GPI-linked Protein as well as she co-founded and works for ACA CELL Biotech. The other authors declare that they do not have any conflict of interest.

Podziękowania

Dedicated to the memory of Dr. Rainer Saffrich.

The authors are especially grateful to José Manuel García-Verdugo and Vicente Herranz-Pérez for performing EM experiments and analysis at the Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Valencia, Spain, which was supported by research funding from the Prometeo Grant for Excellence Research Groups PROMETEO/2019/075. The rest of this work was supported by ACA CELL Biotech GmbH Heidelberg, Germany.
 

Materiały

NameCompanyCatalog NumberComments
Albumin Fraction VRothT8444.4
Anti-GFAP Cy3 conjugateMerck MilliporeMAB3402C3
Anti-MAP2 Alexa Fluor 555Merck MilliporeMAB3418A5
Anti-Nestin Alexa Fluor 488Merck MilliporeMAB5326A4
Anti-Tuj1 Alexa Fluor 488BD Pharmingen560381
AO/PI Cell Viability kitBiozym872045Biozym discontinued. The product produced by Logos Biosystems.
Ascorbic acid 2-phosphate sequimagnesSigma AldrichA8960-5G
B27 Serum free 50xFisher Scientific (Gibco)11530536
Basic FGF solutionFisher Scientific (Gibco)10647225
BiocollMerck MilliporeL6115-BCdensity gradient media
BSA Frac V 7.5%Gibco15260037
CD45 MicroBeadsMiltenyi130-045-801nano-sized magnetic beads
Cell counting slides LunaBiozym872010Biozym discontinued. The product produced by Logos Biosystems.
Chamber Slides Lab-TekFisher Scientific10234121
D-MEM/F12Merck MilliporeFG4815-BC
DurcupanSigma Aldrich44610epoxy resin
FBSMerck MilliporeS0115/1030BDiscontinued. Available under: TMS-013-B
GDNF recombinant humanFisher Scientific (Gibco)10679963
GlutaMax 100xGibco35050038L-glutamine
Glutaraldehyde gradeSigma-AldrichG5882-50ML
Heparin sodium cellSigma-AldrichH3149-50KU
Human BDNFFisher Scientific (Gibco)11588836
Iscove (IMDM)BiochromFG0465
Laminin mouseFisher Scientific (Gibco)10267092
Lead citrateSigma-Aldrich15326-25G
Luna FL Automated Cell CounterBiozym872040Biozym discontinued. The product produced by Logos Biosystems.
MACS BufferMiltenyi130-091-221
MEM NEAA 100xGibco11140035
MiniMACS TrennsäulenMiltenyi130-042-201
Morada digital cameraOlympus
Multiplatte Nunclon 4 wellsFisher Scientific10507591
N2 Supplement 100xFisher Scientific (Gibco)11520536
Neurobasal MediumGibco10888022
PBS sterileRoth9143.2
Poly-L-ornithineSigma-AldrichP4957-50ML
Super Glue-3 LoctiteHenkel
TEM FEI Technai G2 SpiritFEI Europe
Ultracut UC-6Leica
Uranyl acetate CEMS22400

Odniesienia

  1. Peng, J., Zeng, X. The Role of Induced Pluripotent Stem Cells in Regenerative Medicine: Neurodegenerative Diseases. Stem Cell Research and Therapy. 2 (4), 32 (2011).
  2. Sorells, S. F., et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 555 (7696), 377-381 (2018).
  3. Thomson, J. A., et al. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 282 (5391), 1145-1147 (1998).
  4. Takahashi, K., et al. Induction of Pluripotent Stem Cells From Adult Human Fibroblast by Defined Factors. Cell. 131 (5), 861-872 (2007).
  5. Liu, G. -. H., Yi, F., Suzuki, K., Qu, J., Izpisua Belmonte, J. C. Induced neural stem cells: a new tool for studying neural development and neurological disorders. Cell Research. 22 (7), 1087-1091 (2012).
  6. Becker-Kojić, Z. A., et al. Activation by ACA Induces Pluripotency in Human Blood Progenitor Cells. Cell Technologies in Biology and Medicine. 2, 85-101 (2013).
  7. Marchenko, S., Flanagan, L. Immunocytochemistry: Human Neural Stem Cells. Journal of Visualized Experiments. , e267 (2007).
  8. Becker-Kojić, Z. A., et al. A novel glycoprotein ACA is upstream regulator of human heamtopoiesis. Cell Technologies in Biology and Medicine. 2, 69-84 (2013).
  9. Li, D., et al. Neurochemical Regulation of the Expression and Function of Glial Fibrillary Acidic Protein in Astrocytes. Glial. 68 (5), 878-897 (2020).
  10. Melková, K., et al. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules. 9 (3), 105 (2019).
  11. Menezes, J. R., Luskin, M. B. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. Journal of Neuroscience. 14 (9), 5399-5416 (1994).
  12. Bernal, A., Arranz, L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cellular and Molecular Life Sciences. 75 (12), 2177-2195 (2018).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

GM Free GenerationBlood derived Neuronal CellsMembrane nucleus SignalingInduced Pluripotent Stem CellsNon teratogenicBlood derived Pluripotent Stem CellsRegenerative MedicinePBMNCs IsolationCentrifugeAntibody Cross linkingHuman GPI linked Membrane ProteinIscove s Modified Dulbecco s MediumCulture Growth ConditionsMagnetic BeadsCell Wash Procedure

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone