Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
* Wspomniani autorzy wnieśli do projektu równy wkład.
This technique allows for the fast and simple preparation of whole-seed-sized resin section for the observation and analysis of cells, starch granules, and protein bodies in different regions of the seed.
The morphology, size and quantity of cells, starch granules and protein bodies in seed determine the weight and quality of seed. They are significantly different among different regions of seed. In order to view the morphologies of cells, starch granules and protein bodies clearly, and quantitatively analyze their morphology parameters accurately, the whole-seed-sized section is needed. Though the whole-seed-sized paraffin section can investigate the accumulation of storage materials in seeds, it is very difficult to quantitatively analyze the morphology parameters of cells and storage materials due to the low resolution of the thick section. The thin resin section has high resolution, but the routine resin sectioning method is not suitable to prepare the whole-seed-sized section of mature seeds with a large volume and high starch content. In this study, we present a simple dry sectioning method for preparing the whole-seed-sized resin section. The technique can prepare the cross and longitudinal whole-seed-sized sections of developing, mature, germinated, and cooked seeds embedded in LR White resin, even for large seeds with high starch content. The whole-seed-sized section can be stained with fluorescent brightener 28, iodine, and Coomassie brilliant blue R250 to specifically exhibit the morphology of cells, starch granules, and protein bodies clearly, respectively. The image obtained can also be analyzed quantitatively to show the morphology parameters of cells, starch granules, and protein bodies in different regions of seed.
Plant seeds contain storage materials such as starch and protein and provide energy and nutrition for people. The shape, size, and quantity of cell and storage materials determine the weight and quality of seed. The cells and storage materials in different regions of seed have significantly different morphologies, especially for some high-amylose cereal crops with inhibition of starch branching enzyme IIb1,2,3. Therefore, it is very important to investigate the morphologies of cells and storage materials in different regions of seed.
Paraffin secti....
1. Preparation of resin-embedded seed (Figure 1)
Simple dry sectioning method for obtaining a whole-seed-sized section
We establish a simple dry sectioning method for preparing a whole-seed-sized section of seed embedded in LR-white resin (Figure 1). The method can prepare transversal and longitudinal whole-seed-sized sections with thickness of 2 µm (Figure 2-5, Supplementary Figure 1-4). For examples, the mature seed of oilseed rape ca.......
The seeds are the most important renewable resource for food, fodder, and industrial raw material, and are rich in storage materials such as starch and protein. The morphology and quantity of cells and the content and configuration of storage materials affect the weight and quality of seeds7,12. Though the stereology and image analysis technology can measure the size and quantity of cells in a tissue region, they are lacking in many laboratories. The paraffin and.......
The authors have nothing to disclose.
Funding was provided by the National Natural Science Foundation of China (32071927), the Talent Project of Yangzhou University and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
....Name | Company | Catalog Number | Comments |
Acetic acid | Sangon Biotech (Shanghai) Co., Ltd. | A501931 | |
Compact glass staining jar (5-Place) | Sangon Biotech (Shanghai) Co., Ltd. | E678013 | |
Coomassie brilliant blue R-250 | Sangon Biotech (Shanghai) Co., Ltd. | A100472 | |
Coverslip | Sangon Biotech (Shanghai) Co., Ltd. | F518211 | |
Double-sided blade | Gillette Shanghai Co., Ltd. | 74-S | |
Ethanol absolute | Sangon Biotech (Shanghai) Co., Ltd. | A500737 | |
Flattening table | Leica | HI1220 | |
Fluorescence microscope | Olympus | BX60 | |
Fluorescent brightener 28 | Sigma-Aldrich | 910090 | |
Glass strips | Leica | 840031 | |
Glutaraldehyde 50% solution in water | Sangon Biotech (Shanghai) Co., Ltd. | A600875 | |
Glycerol | Sangon Biotech (Shanghai) Co., Ltd. | A600232 | |
Iodine | Sangon Biotech (Shanghai) Co., Ltd. | A500538 | |
Isopropanol | Sangon Biotech (Shanghai) Co., Ltd. | A507048 | |
Light microscope | Olympus | BX53 | |
LR White resin | Agar Scientific | AGR1281A | |
Oven | Shanghai Jing Hong Laboratory Instrument Co.,Ltd. | 9023A | |
Potassium iodide | Sangon Biotech (Shanghai) Co., Ltd. | A100512 | |
Slide | Sangon Biotech (Shanghai) Co., Ltd. | F518101 | |
Tweezers | Sangon Biotech (Shanghai) Co., Ltd. | F519022 | |
Sodium phosphate dibasic dodecahydrate | Sangon Biotech (Shanghai) Co., Ltd. | A607793 | |
Sodium phosphate monobasic dihydrate | Sangon Biotech (Shanghai) Co., Ltd. | A502805 | |
Ultramicrotome | Leica | EM UC7 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone