Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

The ability to accurately detect neuromuscular junction components is crucial in evaluating modifications in its architecture because of pathological or developmental processes. Here we present a complete description of a straightforward method to obtain high-quality images of whole-mount neuromuscular junctions that can be used to perform quantitative measurements.

Streszczenie

The neuromuscular junction (NMJ) is a specialized point of contact between the motor nerve and the skeletal muscle. This peripheral synapse exhibits high morphological and functional plasticity. In numerous nervous system disorders, NMJ is an early pathological target resulting in neurotransmission failure, weakness, atrophy, and even in muscle fiber death. Due to its relevance, the possibility to quantitatively assess certain aspects of the relationship between NMJ components can help to understand the processes associated with its assembly/disassembly. The first obstacle when working with muscles is to gain the technical expertise to quickly identify and dissect without damaging their fibers. The second challenge is to utilize high-quality detection methods to obtain NMJ images that can be used to perform quantitative analysis. This article presents a step-by-step protocol for dissecting extensor digitorum longus and soleus muscles from rats. It also explains the use of immunofluorescence to visualize pre and postsynaptic elements of whole-mount NMJs. Results obtained demonstrate that this technique can be used to establish the microscopic anatomy of the synapsis and identify subtle changes in the status of some of its components under physiological or pathological conditions.

Wprowadzenie

The mammal neuromuscular junction (NMJ) is a large cholinergic tripartite synapse made up of the motor neuron nerve ending, the postsynaptic membrane on the skeletal muscle fiber, and the terminal Schwann cells1,2,3. This synapse exhibits high morphological and functional plasticity4,5,6,7,8, even during adulthood when NMJs can undergo dynamic structural modifications. For example, some researchers have shown that ....

Protokół

All animal procedures were performed according to the guidelines of the National Law N° 18611 for Care of Animals Used for Experimental Purposes. The protocol was approved by the Institutional Ethical Committee (CEUA IIBCE, Protocol Number 004/09/2015).

1. Muscle dissection (Day 1)

NOTE: Before starting, make 40 mL of 0.5% paraformaldehyde (PFA), pH 7.4 in Dulbecco´s phosphate saline (DPBS). Optionally, make 20 mL of 4% PFA. Prepare 5 mL aliquots and freeze at -20 °C. On the day of dissection, defrost a 4% aliquot and add 35 mL of DPBS to obtain 40 mL of 0.5% PFA.

  1. Isolation of E....

Wyniki

This protocol offers a straightforward method to isolate and immunostain muscle fibers from two different types of muscles (fast- and slow-twitch muscles, see Figure 1). Using the correct markers and / or probes, NMJ components can be detected and evaluated since a quantitative point of view to assess some of the morphological changes that can occur as consequence of illness progression or a specific drug treatment. In the present study, presynaptic and postsynaptic components of the NMJ wer.......

Dyskusje

In this article, we present a detailed protocol for the dissection of two rat skeletal muscles (one slow-twitch and the other fast-twitch), fiber muscle isolation and immunofluorescence detection of pre and postsynaptic markers to quantitatively assess NMJ changes as well as assembly/disassembly processes. This kind of protocol can be useful in rodent models41,42 to evaluate NMJ during physiological or pathological processes as exemplified here in a model of.......

Ujawnienia

The authors have nothing to disclose.

Podziękowania

Many thanks to CSIC and PEDECIBA for the financial support given to this work; to Natalia Rosano for her manuscript corrections; to Marcelo Casacuberta that makes the video and to Nicolás Bolatto for lending his voice for it.

....

Materiały

NameCompanyCatalog NumberComments
Stereomicroscope with cool light illuminationNikonSMZ-10A
Rocking platformBiometra (WT 16)042-500
Cover glasses (24 x 32 mm)DeltalabD102432
Premium (Plus) microscope slidesPORLABPC-201-16
TweezersF.S.T11253-20
Uniband LA-4C Scissors 125mmE.M.S77910-26
Disponsable surgical blades #10Sakira Medical1567
Disponsable sterile syringe (1 ml)Sakira Medical1569
Super PAP penE.M.S71310
100 μl or 200 μl pipetteFinnpipette9400130
Confocal microscopeZeissLSM 800 - AiryScan
NTac:SD-TgN(SOD1G93A)L26H ratsTaconic2148-M
1X PBS (Dulbecco)Gibco21600-010
ParaformaldehydeSigma158127
Triton X-100SigmaT8787
GlycineAmresco167
BSABio Basic INC.9048-46-8
GlycerolMallinckrodt5092
TrisAmresco497
Purified anti-Neurofilament H (NF-H), Phosphorylated AntibodyBioLegend801601Previously Covance # SMI 31P
Purified anti-Neurofilament H (NF-H), Nonphosphorylated AntibodyBioLegend801701Previously Covance # SMI-32P
Alexa Fluor 488 goat anti-Mouse IgG (H+L)Thermo ScientificA11029
α-Bungarotoxin, biotin-XX conjugateInvitrogenB1196
Streptavidin, Alexa Fluor 555 conjugateInvitrogenS32355
Diaminophenylindole (DAPI)SigmaD8417

Odniesienia

  1. Araque, A., Parpura, V., Sanzgiri, R. P., Haydon, P. G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neuroscience. 22, 208-215 (1999).
  2. Robitaille, R. Modulation of synaptic eff....

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Skeletal Muscle FibersImmunofluorescenceMorphometric AnalysisNeuromuscular JunctionsEDL MuscleSoleus MuscleDissection ProtocolSurgical InstrumentsSynaptic ComponentsFixation ProcessBiological TweezersUniband ScissorsTendon IdentificationMuscle Isolation

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone