Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The protocol describes the surgical procurement and subsequent decellularization of vascularized porcine flaps by the perfusion of sodium dodecyl sulfate detergent through the flap vasculature in a customized perfusion bioreactor.
Large volume soft tissue defects lead to functional deficits and can greatly impact the patient's quality of life. Although surgical reconstruction can be performed using autologous free flap transfer or vascularized composite allotransplantation (VCA), such methods also have disadvantages. Issues such as donor site morbidity and tissue availability limit autologous free flap transfer, while immunosuppression is a significant limitation of VCA. Engineered tissues in reconstructive surgery using decellularization/recellularization methods represent a possible solution. Decellularized tissues are generated using methods that remove native cellular material while preserving the underlying extracellular matrix (ECM) microarchitecture. These acellular scaffolds can then be subsequently recellularized with recipient-specific cells.
This protocol details the procurement and decellularization methods used to achieve acellular scaffolds in a pig model. In addition, it also provides a description of the perfusion bioreactor design and setup. The flaps include the porcine omentum, tensor fascia lata, and the radial forearm. Decellularization is performed via ex vivo perfusion of low concentration sodium dodecyl sulfate (SDS) detergent followed by DNase enzyme treatment and peracetic acid sterilization in a customized perfusion bioreactor.
Successful tissue decellularization is characterized by a white-opaque appearance of flaps macroscopically. Acellular flaps show the absence of nuclei on histological staining and a significant reduction in DNA content. This protocol can be used efficiently to generate decellularized soft tissue scaffolds with preserved ECM and vascular microarchitecture. Such scaffolds can be used in subsequent recellularization studies and have the potential for clinical translation in reconstructive surgery.
Traumatic injury and tumor removal can lead to large and complex soft tissue defects. These defects can impair patient quality of life, cause loss of function, and result in permanent disability. While techniques such as autologous tissue flap transfer have been commonly practiced, issues with flap availability and donor site morbidity are major limitations1,2,3. Vascularized composite allotransplantation (VCA) is a promising alternative that transfers composite tissues, e.g., muscle, skin, vasculature, as a single unit to recipients. However, VCA requires long-term immunosuppression, which leads to drug toxicity, opportunistic infections, and malignancies4,5,6.
Tissue-engineered acellular scaffolds are a potential solution to these limitations7. Acellular tissue scaffolds can be obtained using decellularization methods, which remove cellular material from native tissues while preserving the underlying extracellular matrix (ECM) microarchitecture. In contrast to the use of synthetic materials in tissue engineering, the use of biologically derived scaffolds offers a biomimetic ECM substrate that allows biocompatibility and the potential for clinical translation8. Following decellularization, the subsequent recellularization of scaffolds with recipient-specific cells can then generate functional, vascularized tissues with little to no immunogenicity9,10,11. By developing an effective protocol to obtain acellular tissues using perfusion decellularization techniques, a broad range of tissue types can be engineered. In turn, building on this technique allows the application to more complex tissues. To date, perfusion decellularization of vascularized soft tissues has been investigated using simple vascularized tissues such as a full thickness fasciocutaneous flap in rodent12, porcine13, and human models14, as well as porcine rectus abdominis skeletal muscle15. Additionally, complex vascularized tissues have also been perfusion decellularized as demonstrated in porcine and human ear16,17 models and human full-face graft models18.
Here, the protocol describes the decellularization of vascularized free flaps using biologically derived ECM scaffolds. We present the decellularization of three clinically relevant flaps: 1) the omentum, 2) the tensor fascia lata, and 3) the radial forearm, all of which are representative of workhorse flaps used routinely in reconstructive surgery and have not been previously examined in animal studies within the context of tissue decellularization. These bioengineered flaps offer a versatile and readily available platform that has the potential for clinical applications for use in the field of large soft tissue defect repair and reconstruction.
Access restricted. Please log in or start a trial to view this content.
All procedures involving animal subjects have been approved by the University Health Network Institutional Animal Care and Use Committee (IACUC) and are performed in accordance with University Health Network Animal Resource Centre protocol and procedures and Canadian Council on Animal Care Guidelines. Five Yorkshire pigs (35-50 kg; age approximately 12 weeks old) were used for all experiments.
1. Perfusion bioreactor fabrication
Figure 1: Fabrication of the perfusion bioreactor. The perfusion bioreactor consists of (A) a plastic polypropylene tissue chamber (B) with side holes drilled to accommodate perfusion tubing with air-and water-tight lid. (C) Stopcocks are attached to tubing to allow for the attachment of the perfusion tubing that carries decellularization agents from the detergent reservoir to waste in a single-pass fashion. (D) Compatible pump cassettes are used to connect the three-stop tubing to the peristaltic pump. Please click here to view a larger version of this figure.
2. Preparation of decellularization solutions
3. Procurement of porcine flaps
NOTE: This is a terminal procedure. One pig was used to procure all three flaps. Humanely euthanize the animal following the procurement of all flaps.
Figure 2: Procurement of three porcine vascularized flaps. (A) Omentum. The right (i) and left (ii) gastroepiploic arteries are cannulated in the omental flap (iii). (B) Tensor fascia lata. The pedicle of the flap (iv) is the ascending branch of the lateral femoral circumflex artery (v). (C) Radial forearm flap. Procurement of the radial forearm flap (vi) is based on the radial artery and the vena comitantes (vii) as the vascular pedicle (NOTE: Drapes were omitted for demonstration purposes). Scale bars: 3 cm. Please click here to view a larger version of this figure.
4. Setup of the decellularization system
Figure 3: Assembled perfusion decellularization system. (A) Schematic of the perfusion decellularization system. The inflow tubing carries perfusate from the detergent reservoir into the tissue chamber in a single-pass fashion with pressure sensor monitoring. The outflow tubing removes perfusate actively from the tissue chamber into the waste container. Black arrows denote the direction of perfusion flow. A peristaltic pump is used with the left pump to control inflow. Outflow is actively removed using a second peristaltic pump through the respective tubing. Figure created with BioRender.com. (B) Photograph of the perfusion decellularization system assembled on the benchtop with the inflow peristaltic pump (i) connected to the tissue chambers (ii) and then the outflow peristaltic pump (iii). The inflow perfusate pressure is monitored with an in-line pressure sensor (iv) prior to entering the tissue chamber. Here, three flaps are decellularized in parallel. Both the detergent and waste reservoirs are below the benchtop and not photographed. Please click here to view a larger version of this figure.
5. Decellularization of porcine flaps
Table 1: Summary of perfusion-decellularization protocol parameters. Please click here to download this Table.
6. Evaluation of decellularization
Access restricted. Please log in or start a trial to view this content.
This protocol to decellularize vascularized porcine flaps relies on the perfusion of an ionic-based detergent, SDS, through the flap vasculature in a customized perfusion bioreactor. Prior to decellularization, three vascularized flaps in a porcine model were procured and cannulated according to their main supplying vessels. The flaps were immediately flushed after procurement in order to maintain a patent, perfusable vasculature to allow for successful decellularization. Using airtight snap-lid containers, a customized ...
Access restricted. Please log in or start a trial to view this content.
The proposed protocol uses the perfusion of low concentration SDS to decellularize a range of porcine-derived flaps. With this procedure, acellular omentum, tensor fascia lata, and radial forearm flaps can be successfully decellularized using a protocol that favors low concentration SDS. Preliminary optimization experiments have determined that SDS at a low concentration (0.05%) between 2 days to 5 days is capable of removing cellular material for the omentum, tensor fascia lata, and radial forearm flap when analyzed wit...
Access restricted. Please log in or start a trial to view this content.
The authors have no conflicts of interest to disclose.
None
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
0.2 µm pore Acrodisk Filter | VWR | CA28143-310 | |
0.9 % Sodium Chloride Solution (Normal Saline) | Baxter | JF7123 | |
20 L Polypropylene Carboy | Cole-Parmer | RK-62507-20 | |
3-0 Sofsilk Nonabsorbable Surgical Tie | Covidien | LS639 | |
3-way Stopcock | Cole-Parmer | UZ-30600-04 | |
Adson Forceps | Fine Science Tools | 11027-12 | |
Antibiotic-Antimycotic Solution, 100X | Wisent | 450-115-EL | |
Atropine Sulphate 15 mg/30ml | Rafter 8 Products | 238481 | |
BD Angiocath 20-Gauge | VWR | BD381134 | |
BD Angiocath 22-Gauge | VWR | BD381123 | |
BD Angiocath 24-Gauge | VWR | BD381112 | |
Calcium Chloride | Sigma-Aldrich | C4901 | DNAse Co-factor |
DNase I from bovine pancreas | Sigma-Aldrich | DN25 | |
DNA assay (Quant-iT PicoGreen dsDNA Assay Kit) | Invitrogen | P7589 | |
DPBS, 10X | Wisent | 311-415-CL | without Ca++/Mg++ |
Halsted-Mosquito Hemostat | Fine Science Tools | 13008-12 | |
Heparin, 1000 I.U./mL | Leo Pharma A/S | 453811 | |
Ketamine Hydrochloride 5000 mg/50 ml | Bimeda-MTC Animal Health Inc. | 612316 | |
Ismatec Pump Tygon 3-Stop Tubing | Cole-Parmer | RK-96450-40 | Internal Diameter: 1.85 mm |
Ismatec REGLO 4-Channel Pump | Cole-Parmer | 78001-78 | |
Ismatec Tubing Cassettes | Cole-Parmer | RK-78016-98 | |
Isoflurane 99.9%, 250 ml | Pharmaceutical Partners of Canada Inc. | 2231929 | |
LB Agar Lennox | Bioshop Canada | LBL406.500 | Sterility testing agar plates |
Magnesium Sulfate | Sigma-Aldrich | M7506 | DNAse Co-factor |
Masterflex L/S 16 Tubing | Cole-Parmer | RK-96410-16 | |
Midazolam 50 mg/10 ml | Pharmaceutical Partners of Canada Inc. | 2242905 | |
Monopolar Cautery Pencil | Valleylab | E2100 | |
Normal Buffered Formalin, 10% | Sigma-Aldrich | HT501128 | |
N°11 scalpel blade | Swann Morton | 303 | |
Papain from papaya latex | Sigma-Aldrich | P3125 | |
Peracetic Acid | Sigma-Aldrich | 269336 | |
Plastic Barbed Connector for 1/4" to 1/8" Tube ID | McMaster-Carr | 5117K61 | |
Plastic Barbed Tube 90° Elbow Connectors | McMaster-Carr | 5117K76 | |
Plastic Quick-Turn Tube Plugs | McMaster-Carr | 51525K143 | Male Luer |
Plastic Quick-Turn Tube Sockets | McMaster-Carr | 51525K293 | Female Luer |
Punch Biopsy Tool | Integra Miltex | 3332 | |
Potassium Chloride 40 mEq/20 ml | Hospira Healthcare Corporation | 37869 | |
Povidone-Iodine, 10% | Rougier | 833133 | |
Serological Pipet, 2mL | Fisher Science | 13-678-27D | |
Snap Lid Airtight Containers | SnapLock | 142-3941-4 | |
Sodium Dodecyl Sulfate Powder | Sigma-Aldrich | L4509 | |
Surgical Metal Ligation Clips, Small | Teleflex | 001200 | |
Stevens Tenotomy Scissors, 115 mm, straight | B. Braun | BC004R | |
TruWave Pressure Monitoring Set | Edwards Lifesciences | PX260 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone