Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Teleoperated robotic system-assisted percutaneous transiliac-transsacral screw fixation is a feasible technique. Screw channels can be implemented with high accuracy owing to the excellent freedom of movement and stability of the robotic arms.
Transiliac-transsacral screw fixation is challenging in clinical practice as the screws need to break through six layers of cortical bone. Transiliac-transsacral screws provide a longer lever arm to withstand the perpendicular vertical shear forces. However, the screw channel is so long that a minor discrepancy can lead to iatrogenic neurovascular injuries. The development of medical robots has improved the precision of surgery. The present protocol describes how to use a new teleoperated robotic system to execute transiliac-transacral screw fixation. The Robot was operated remotely to position the entry point and adjust the orientation of the sleeve. The screw positions were evaluated using postoperative computed tomography (CT). All the screws were safely implanted, as confirmed using intraoperative fluoroscopy. Postoperative CT confirmed that all the screws were in the cancellous bone. This system combines the doctor's initiative with the Robot's stability. The remote control of this procedure is possible. Robot-assisted surgery has a higher position-retention capacity compared with conventional methods. In contrast to active robotic systems, surgeons have full control over the operation. The robot system is fully compatible with operating room systems and does not require additional equipment.
The first robotic application utilized in orthopedic surgery was the ROBODOC system employed in 19921. Since then, robot-assisted surgical systems have rapidly developed. Robot-assisted surgery improves arthroplasty by enhancing the surgeon's ability to restore the alignment of the limb and the physiological kinematics of the joint2. In spinal surgery, the placement of pedicle screws using a robot is safe and accurate; it also reduces the surgeon's radiation exposure3. However, studies on robot-assisted surgery have been limited owing to the heterogeneity of traumatic orthopedic diseases. The existing research on robotic surgery for orthopedic trauma mainly focuses on robot-assisted sacroiliac joint screws and pubic-screw fixation of pelvic ring fractures4, cannulated screw fixation of the femoral neck5, entry point and distal locking bolts in intramedullary nailing6,7, percutaneous fracture reduction8,9, and the treatment of critically wounded patients in the military field10.
The percutaneous screw technique can be performed using 2D and 3D navigation support. The sacroiliac, anterior column, posterior column, supraacetabular, and magic screws are the most common percutaneous techniques for pelvic and acetabular factures11. The percutaneous transiliac-transsacral screw technique remains challenging for surgeons. An understanding of pelvic anatomy and X-ray fluoroscopy, accurate positioning, and long-term hand stability are required for this procedure. The teleoperated robotic system can meet these requirements well. This study utilizes a teleoperated robotic system to complete percutaneous transiliac-transsacral screw fixation for pelvic ring fractures. The details and workflow of this protocol are presented below.
Robotic system
The Master-Slave Orthopaedic Positioning and Guidance System (MSOPGS) is mainly composed of three parts: the surgical Robot (Slave Manipulator) with seven degrees of freedom (DOF), the Master Manipulator with force feedback, and the console. The system has four operating modes: manual traction, master-slave operation, remote center of motion (ROM), and emergency. Figure 1 shows the MSOPPGS; its main components are briefly described below.
The surgical robot (see Table of Materials) is a seven DOF manipulator that is pre-certified for integration into medical products12. The Robot has force-feedback sensors that can detect changes in force. The robotic arm can be operated manually or remotely. A torque sensor is installed at the tip and mapped to the "Master Manipulator," enabling real-time force feedback. The maximum load on the robotic arm is sufficient to resist soft tissue forces and reduce the fluttering of the surgical instruments. The Robot is attached to a mobile platform to acquire an operational workplace and ensure stability. The base is connected to the "Master Manipulator" and the operative system and can process instructions from the operative system.
The "Master Manipulator" is designed for healthcare industries to precisely control the Robot. This device offers seven active DOF, including high-precision force-feedback grasping capabilities. Its end effector covers the natural range of motion of the human hand. An incremental control strategy is used to achieve intuitive control of the robotic arm.
The operative system provides four methods for controlling the robotic arm: manual traction, master-slave operation mode, remote centre of motion (RCM), and emergency. The operative system links the surgeon and Robot and provides safety alarms. The manual traction mode allows the manipulator to be dragged freely within a specific working range. The Robot is automatically locked after being stopped for 5 s. In the master-slave mode, the surgeon can use the "Master Manipulator" to control the movement of the robotic arm. The RCM mode permits the surgical instrument to pivot around the end of the instrument. The RCM mode is best suited to reorientation on the axial fluoroscopy view of the channel, such as the radiographic teardrop sign of the supraacetabular channel and the true sacral view of the transiliac-transsacral osseous pathway. The manipulator can be used for emergency braking at any position. Figure 2 shows the workflow of the system.
The application of this robotic technique was approved by the ethics committee of the Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, and it complies with the Helsinki Declaration of 1975, as revised in 2013.
1. Preoperative planning
2. Surgical setting
3. Surgical procedure
NOTE: After the system is started and inspected, the manipulator is automatically deployed to the working state.
4. Postoperative assessment
A senior orthopedic surgeon completed the surgery using the procedure described. All the screws (three in S1 and two in S2) were secured. The time taken (from the first X-ray fluoroscopy to the insertion of the screw) for inserting each of the five screws was 32 min, 28 min, 26 min, 20 min, and 23 min, respectively. The fluoroscopy time for each screw was approximately 5 min. Although all the screws were in the correct place on the intraoperative fluoroscopic images, several articles have highlighted the need for postope...
Regardless of the type of Robot, the core application of robots in orthopedics provides an advanced tool for surgeons to improve the accuracy of surgery. However, the emergence of surgical robots is not a replacement for doctors. Surgeons performing robotic surgery may or may not be in the operating room. Surgical robots generally include a computer control system, a robotic arm responsible for the operation, and a navigation system responsible for tracking. There are three categories of robot systems depending on how th...
The authors declare that they have no competing interests.
None.
Name | Company | Catalog Number | Comments |
160-slice CT | United Imaging Healthcare Surgical Technology Co. Ltd | uCT780 | Acquire the prescise image and DICOM data |
Electric bone drill | YUTONG Medical | None | Power system |
Fluoroscopic plate base | None | None | Fix the cadaveric pelves to operating table |
K-wire | None | 2.5mm | Guidewire |
Master-Slave Orthopaedic Positioning and Guidance System | United Imaging Healthcare Surgical Technology Co. Ltd | None | A teleoperated robotic system that positions screws for orthopaedic surgery |
Mimics Innovation Suite | Materialise | Mimics Medical 21 | Preoperative planning software |
Mobile C-arm | United Imaging Healthcare Surgical Technology Co. Ltd | uMC560i | Low Dose CMOS Mobile C-arm |
Operating table | KELING | DL·C-I | Fluoroscopic surgical table |
Schanz pins | Tianjin ZhengTian Medical Instrument Co.,Ltd. | 5.0mm | Fix the cadaveric pelves |
Semi-threaded screw | Tianjin ZhengTian Medical Instrument Co.,Ltd. | 7.3mm | Transiliac-Transsacral Screw |
Seven DOF manipulator | KUKA, Germany | LBR Med 7 R800 | Device for performing surgical operations |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone