In this article, we demonstrate assays to study thermal nociception in Drosophila larvae. One assay involves spatially-restricted (local) stimulation of thermal nociceptors1,2 while the second involves a wholesale (global) activation of most or all such neurons3. Together, these techniques allow visualization and quantification of the behavioral functions of Drosophila nociceptive sensory neurons.
Telomere and telomerase play essential roles in ageing and tumorigenesis. The goal of this protocol is to show how to generate two murine inducible telomerase knock-in alleles and how to utilize them in the studies of tissue degeneration/regeneration and cancer.
We present an immunofluorescence imaging-based method for spatial and temporal localization of active ERK in the dissected C. elegans gonad. The protocol described here can be adapted for visualization of any signaling or structural protein in the C. elegans gonad, provided a suitable antibody reagent is available.
Differential scanning calorimetry measures the thermal transition temperature(s) and total heat energy required to denature a protein. Results obtained are used to assess the thermal stability of protein antigens in vaccine formulations.
Here we demonstrate a novel assay to study cold nociception in Drosophila larvae. This assay utilizes a custom-built Peltier probe capable of applying a focal noxious cold stimulus and results in quantifiable cold-specific behaviors. This technique will allow further cellular and molecular dissection of cold nociception.
This article outlines the procedures to isolate myeloid-derived suppressor cells from mouse solid tumors and perform an in vitro assay with the cells to determine their response migration potential to certain soluble factors like cytokines and chemokines.
The goal of this protocol is to show how to perform an improved assay for mechanical nociception in Drosophila larvae. We use the assay here to demonstrate that mechanical hypersensitivity (allodynia and hyperalgesia) exists in Drosophila larvae.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved